Skip to main content
Log in

Insights of Global Sensitivity Analysis in Biological Models with Dependent Parameters

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Global sensitivity analysis (GSA) has become an important tool in the modeling process of biological phenomenon to determine how the uncertainty of model inputs influences the model response. Usually, GSA methods assume the independence of input distributions and several heuristics for model design were defined to improve models’ design and parametrization (Cariboni et al. in Ecol Model, 203(1–2):167–182, 2007). However, recent developments of GSA with dependent inputs suggest reconsidering them from another perspective. In particular, Sobol’s indices were generalized to dependent inputs by explicitly dissociating structural and correlation influence on model outputs (Li et al. in J Phys Chem A, 114(19):6022–6032, 2010). This study considers the prey–predator model, Lotka–Volterra, and the individual plant growth model, Sunflo, to illustrate these new indices and aims to confront them to usual heuristics. The introduction of parameters’ dependence was managed with copulas’ theory, and generalized Sobol’s indices were estimated with the hierarchically orthogonal Gram–Schmidt procedure (Chastaing et al. in J Stat Comput Simul, 85(7):1306–1333, 2015). Strong changes were observed due to the introduction of parameters’ dependence, but classical heuristics remain consistent in the generalized framework. Although additional studies are essential to define more precisely these new heuristics, generalized Sobol’s indices are a promising statistical tool for deepening the understanding of biological model behavior. Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baey, C., A. Mathieu, A. Jullien, S. Trevezas, and P.-H. Cournède 2017. Mixed-effects estimation in dynamic models of plant growth for the assessment of inter-individual variability. Journal of agricultural, biological and environmental statistics, In press.

  • Cariboni, J., D. Gatelli, R. Liska, and A. Saltelli 2007. The role of sensitivity analysis in ecological modelling. Ecological modelling, 203(1–2):167–182. Special Issue on Ecological Informatics: Biologically-Inspired Machine Learning 4th Conference of the International Society for Ecological Informatics.

  • Casadebaig, P., L. Guilioni, J. Lecoeur, A. Christophe, L. Champolivier, and P. Debaeke 2011. Sunflo, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agricultural and forest meteorology, 151(2):163–178.

    Article  Google Scholar 

  • Champion, M., G. Chastaing, S. Gadat, and C. Prieur 2015. L2-boosting for sensitivity analysis with dependent inputs. Statistica sinica, 25(4):1477–1502.

    MathSciNet  MATH  Google Scholar 

  • Chastaing, G. 2013. Indices de Sobol généralisés pour variables dépendantes. PhD thesis, Université de Grenoble.

  • Chastaing, G., F. Gamboa, and C. Prieur 2015. Generalized sobol sensitivity indices for dependent variables: numerical methods. Journal of statistical computation and simulation, 85(7):1306–1333.

    Article  MathSciNet  Google Scholar 

  • Cournéde, P.-H., Y. Chen, Q. Wu, C. Baey, and B. Bayol 2013. Development and evaluation of plant growth models : Methodology and implementation in the pygmalion platform. Mathematical modelling of natural phenomena, 8(4):112–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Davidian, M. and D. M. Giltinan 2003. Nonlinear models for repeated measurement data: an overview and update. Journal of agricultural, biological and environmental statistics, 8(4):387–419.

    Article  Google Scholar 

  • De Reffye, P., E. Heuvelink, D. Barthélémy, and P.-H. Cournède 2008. Plant growth models. In Encyclopedia of ecology, S. E. Jorgensen and B. Fath, eds., Pp.  2824–2837. Amsterdam, NX, Netherlands: Elsevier.

    Chapter  Google Scholar 

  • Hoeffding, W. 1948. A class of statistics with asymptotically normal distribution. The annals of mathematical statistics, 19(3):293–325.

    Article  MathSciNet  MATH  Google Scholar 

  • Hooker, G. 2007. Generalized functional anova diagnostics for high-dimensional functions of dependent variables. Journal of computational and graphical statistics, 16(November):709–732.

    Article  MathSciNet  Google Scholar 

  • Jaworski, P., F. Durante, W. K. Hardle, and T. Rychlik 2010. Copula theory and its applications. Heidelberg, BW, Germany: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Jones, M. C., J. S. Marron, and S. J. Sheather 1996. A brief survey of bandwidth selection for density estimation. Journal of the american statistical association, 91(433):401–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Kucherenko, S., S. Tarantola, and P. Annoni 2012. Estimation of global sensitivity indices for models with dependent variables. Computer physics communications, 183(4):937–946.

    Article  MathSciNet  MATH  Google Scholar 

  • Lamboni, M., H. Monod, and D. Makowski 2011. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliability engineering & system safety, 96(4):450–459.

    Article  Google Scholar 

  • Lecoeur, J., R. Poiré-Lassus, A. Christophe, B. Pallas, P. Casadebaig, P. Debaeke, F. Vear, and L. Guilioni 2011. Quantifying physiological determinants of genetic variation for yield potential in sunflower. sunflo: a model-based analysis. Functional plant biology, 38(3):246–259.

    Article  Google Scholar 

  • Letort, V., P. Mahe, P.-H. Cournède, P. de Reffye, and B. Courtois 2008. Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of botany, 101(8):951–963.

    Google Scholar 

  • Li, G. and H. Rabitz 2012. General formulation of hdmr component functions with independent and correlated variables. Journal of mathematical chemistry, 50(1):99–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, G., H. Rabitz, P. E. Yelvington, O. O. Oluwole, F. Bacon, C. E. Kolb, and J. Schoendorf 2010. Global sensitivity analysis for systems with independent and/or correlated inputs. The journal of physical chemistry A, 114(19):6022–32.

    Article  Google Scholar 

  • Monod, H., C. Naud, and D. Makowski 2006. Uncertainty and sensitivity analysis for crop models. In Working with dynamic crop models. Evaluation, analysis, parameterization, and applications., D. Wallach, D. Makowski, and J. W. Jones, eds., Pp.  55–100. Amsterdam, NX, Netherlands: Elsevier.

  • Nelsen, R. B. 2007. An introduction to copulas. New York, NY, USA: Springer-Verlag.

    MATH  Google Scholar 

  • Sainte-Marie, J., G. Viaud, and P.-H. Cournède 2017. Indices de sobol gènèralisès aux variables dèpendentes: tests de performance de l’algorithme hogs couplé à plusieurs estimateurs paramétriques. Journal de la société française de statistique, 158(1):68–89. Special Issue: Computer Experiments, Uncertainty and Sensitivity Analysis.

  • Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola 2008. Global sensitivity analysis. Chichester, SXW, England: John Wiley & Sons.

    MATH  Google Scholar 

  • Scaillet, O., A. Charpentier, and J.-D. Fermanian 2007. The estimation of copulas: theory and practice. In Copulas: from theory to application in finance, J. Rank, ed., Pp.  35–64. London, LDN, England: London : Risk Books.

    Google Scholar 

  • Sklar, M. 1959. Fonctions de répartition àn dimensions et leurs marges. Paris, IDF, France: Universitè Paris 8.

  • Sobol, I. 1993. Sensitivity analysis for non-linear mathematical models. Mathematical modeling and computational experiment, 1(4):407–414.

    MathSciNet  MATH  Google Scholar 

  • Stone, C. J. 1994. The use of polynomial splines and their tensor products in multivariate function estimation. The annals of statistics, 22(1):118–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Tardieu, F. 2003. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in plant science, 8(1):9–14.

    Article  Google Scholar 

  • Villasenor Alva, J. A. and E. González Estrada 2009. A generalization of shapiro-wilk’s test for multivariate normality. Communications in statistics - theory and methods, 38(11):1870–1883.

    Article  MathSciNet  MATH  Google Scholar 

  • Vos, J., J. B. Evers, G. H. Buck-Sorlin, B. Andrieu, M. Chelle, and P. H. B. De Visser 2009. Functional–structural plant modelling: a new versatile tool in crop science. Journal of experimental Botany, 61(8):2101–15.

    Article  Google Scholar 

  • Wu, Q.-L., P.-H. Cournède, and A. Mathieu 2012. An efficient computational method for global sensitivity analysis and its application to tree growth modelling. Reliability engineering & system safety, 107:35–43.

    Article  Google Scholar 

  • Zou, H. and T. Hastie 2005. Regularization and variable selection via the elastic net. Journal of the royal statistical society, series B, 67(2):301–320.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Sainte-Marie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 168 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sainte-Marie, J., Cournède, PH. Insights of Global Sensitivity Analysis in Biological Models with Dependent Parameters. JABES 24, 92–111 (2019). https://doi.org/10.1007/s13253-018-00343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-018-00343-1

Keywords

Navigation