Skip to main content
Log in

Shear wave elastography in chronic kidney disease – the physics and clinical application

  • Invited Review
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Chronic kidney disease is a leading public health problem worldwide. The global prevalence of chronic kidney disease is nearly five hundred million people, with almost one million deaths worldwide. Estimated glomerular filtration rate, imaging such as conventional ultrasound, and histopathological findings are necessary as each technique provides specific information which, when taken together, may help to detect and arrest the development of chronic kidney disease, besides managing its adverse outcomes. However, estimated glomerular filtration rate measurements are hampered by substantial error margins while conventional ultrasound involves subjective assessment. Although histopathological assessment is the best tool for evaluating the severity of the renal pathology, it may lead to renal insufficiency and haemorrhage if complications occurred. Ultrasound shear wave elastography, an emerging imaging that quantifies tissue stiffness non-invasively has gained interest recently. This method applies acoustic force pulses to generate shear wave within the tissue that propagate perpendicular to the main ultrasound beam. By measuring the speed of shear wave propagation, the tissue stiffness is estimated. This paper reviews the literature and presents our combined experience and knowledge in renal shear wave elastography research. It discusses and highlights the confounding factors on shear wave elastography, current and future possibilities in ultrasound renal imaging and is not limited to new sophisticated techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS et al (2016) Global prevalence of chronic kidney disease - A systematic review and meta-analysis. PLoS One 11(7):e0158765. https://doi.org/10.1371/journal.pone.0158765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Azhar F, Saeed R, Danish S, Anwar S (2021) Prevalence and burden of chronic kidney disease in developing countries: a review. Asian J Pediatr Nephrol 4:11–17.

  3. Rivara MB, Mehrotra R (2014) The changing landscape of home dialysis in the United States. Curr Opin Nephrol Hypertens 23(6):586–91. https://doi.org/10.1097/mnh.0000000000000066

  4. Dhaun N, Bellamy CO, Cattran DC, Kluth DC (2014) Utility of renal biopsy in the clinical management of renal disease. Kidney Int 85(5):1039–1048. https://doi.org/10.1038/ki.2013.512

    Article  PubMed  Google Scholar 

  5. Jalalonmuhali M, Lim SK, Md Shah MN, Ng KP (2017) MDRD vs. CKD-EPI in comparison to 51Chromium EDTA: a cross sectional study of Malaysian CKD cohort. BMC Nephrol 18(1):363. https://doi.org/10.1186/s12882-017-0776-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Petrucci I, Clementi A, Sessa C, Torrisi I, Meola M (2018) Ultrasound and color Doppler applications in chronic kidney disease. J Nephrol 31(6):863–879. https://doi.org/10.1007/s40620-018-0531-1

  7. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK (2017) Ultrasound Elastography: review of techniques and clinical applications. Theranostics 7(5):1303–1329. https://doi.org/10.7150/thno.18650

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lim WTH, Ooi EH, Foo JJ, Ng KH, Wong JHD, Leong SS (2021) Shear wave elastography: a review on the confounding factors and their potential mitigation in detecting chronic kidney disease. Ultrasound Med Biol 47(8):2033–2047. https://doi.org/10.1016/j.ultrasmedbio.2021.03.030

  9. Urban MW, Rule AD, Atwell TD, Chen S (2021) Novel uses of ultrasound to assess kidney mechanical properties. Kidney360 2(9):1531–1539. https://doi.org/10.34067/kid.0002942021

  10. Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG et al. (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol 41(5):1126–1147. https://doi.org/10.1016/j.ultrasmedbio.2015.03.009

    Article  PubMed  Google Scholar 

  11. Bamber J, Cosgrove D, Dietrich CF, Fromageau J, Bojunga J, Calliada F et al. (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med 34(2):169–184. https://doi.org/10.1055/s-0033-1335205

  12. Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH et al. (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med 34(3):238–253. https://doi.org/10.1055/s-0033-1335375

  13. Martini F (2006) Anatomy and Physiology’2007 Ed. Rex Bookstore, Inc

  14. Rhodin J (1958) Anatomy of kidney tubules. Int Rev Cytol 7:485–534

  15. Chruścik AKK, Windus L, Whiteside E (2021) Fundamentals of anatomy and physiology. University of Southern Queensland

  16. Schnaper HW (2014) Remnant nephron physiology and the progression of chronic Kidney Disease. Pediatr 29(2):193–202.

    Google Scholar 

  17. Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69(2):213–217

    Article  CAS  PubMed  Google Scholar 

  18. Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of notch, wnt and hedgehog. Nat Rev Nephrol 12(7):426–439.

  19. Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. Vivo 31(1):1–22.

    Article  CAS  Google Scholar 

  20. Rouvière O, Souchon R, Pagnoux G, Ménager JM, Chapelon JY (2011) Magnetic resonance elastography of the kidneys: feasibility and reproducibility in young healthy adults. J Magn Reson Imaging 34(4):880–6.

  21. Levey AS, Inker LA (2017) Assessment of glomerular filtration rate in health and disease: a state of the art review. Clin Pharmacol Ther 102(3):405–419.

  22. Luis-Lima S, Porrini E (2017) An overview of errors and flaws of estimated GFR versus true GFR in patients with diabetes mellitus. Nephron 136(4):287–291.

  23. Levey AS, Becker C, Inker LA (2015) Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA 313(8):837–846.

  24. Schwartz GJ, Furth SL (2007) Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr 22(11):1839–1848.

    Google Scholar 

  25. Zamir G, Sakran W, Horowitz Y, Koren A, Miron D (2004) Urinary tract Infection: is there a need for routine renal ultrasonography? Arch Dis Child 89(5):466–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee HY, Soh H, Hee Hong B, Joon Kim C, Won Han M S (2009) The efficacy of ultrasound and dimercaptosuccinic acid scan in predicting vesicoureteral reflux in children below the age of 2 years with their first febrile urinary tract infection. Pediatr 24(10).

  27. Leong SS, Wong JHD, Md Shah MN, Vijayananthan A, Jalalonmuhali M, Ng KH (2018) Shear wave elastography in the evaluation of renal parenchymal stiffness in patients with chronic kidney disease. Br J Radiol 91(1089):20180235. https://doi.org/10.1259/bjr.20180235

    Article  PubMed  PubMed Central  Google Scholar 

  28. Herget-Rosenthal S (2011) Imaging techniques in the management of chronic kidney disease: current developments and future perspectives. Semin Nephrol 31(3):283–90

  29. Sandilands EA, Dhaun N, Dear JW, Webb DJ (2013) Measurement of renal function in patients with chronic kidney disease. Br J Clin Pharmacol 76(4):504–515.

  30. Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI (2012) Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int 81(7):684–689.

    Article  CAS  PubMed  Google Scholar 

  31. Becker S, Witzke O, Kribben A (2009) Nephrogene Systemische Fibrose. Med Klin 104(3):204–9.

  32. Cohen EI, Kelly SA, Edye M, Mitty HA, Bromberg JS (2009) MRI estimation of total renal volume demonstrates significant association with healthy donor weight. Eur J Radiol 71(2):283–7

    Article  PubMed  Google Scholar 

  33. Gupta S, Singh AH, Shabbir A, Hahn PF, Harris G, Sahani D (2012) Assessing renal parenchymal volume on unenhanced CT as a marker for predicting renal function in patients with chronic kidney disease. Acad Radiol 19(6):654–660.

  34. Huang C, Kuo C, Chen Y (2011) The incidence of fatal kidney biopsy. Clin Nephrol 76(3):256–8.

    Article  CAS  PubMed  Google Scholar 

  35. Urban MW, Nenadic IZ, Chen S, Greenleaf JF (2013) Discrepancies in reporting tissue material properties. J Ultrasound Med 32(5):886–888. https://doi.org/10.7863/ultra.32.5.886

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sporea I, Bota S, Gradinaru-Tascau O, Sirli R, Popescu A (2014) Comparative study between two point shear wave elastographic techniques: acoustic radiation force impulse (ARFI) elastography and ElastPQ. Med Ultrason 16(4):309–14.

  37. Grenier N, Gennisson J, Cornelis F, Le Bras Y, Couzi L (2013) Renal ultrasound elastography. Diagn Interv Imaging 94(5):545–50.

  38. Cantisani V, Grazhdani H, Drakonaki E, D’Andrea V, Di Segni M, Kaleshi E et al (2015) Strain US elastography for the characterization of thyroid nodules: advantages and limitation. Int J Endocrinol 2015:908575

  39. Ozkan F, Yavuz YC, Inci MF, Altunoluk B, Ozcan N, Yuksel M et al (2013) Interobserver variability of ultrasound elastography in transplant kidneys: correlations with clinical-Doppler parameters. Ultrasound Med Biol 39(1):4–9.

    Article  PubMed  Google Scholar 

  40. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F et al (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29(12):1705–13.

    Article  PubMed  Google Scholar 

  41. Nakao T, Ushigome H, Nakamura T, Harada S, Koshino K, Suzuki T et al (2015) Evaluation of renal allograft fibrosis by transient elastography (Fibro Scan). Transplant Proc 47(3):640–3.

  42. Sommerer C, Scharf M, Seitz C, Millonig G, Seitz HK, Zeier M et al (2013) Assessment of renal allograft fibrosis by transient elastography. Transpl Int 26(5):545–51.

  43. Gennisson J, Deffieux T, Fink M, Tanter M (2013) Ultrasound elastography: principles and techniques. Diagn Interv Imaging 94(5):487–95.

  44. Tanter M, Fink M (2014) Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 61(1):102–19.

  45. Bruce M, Kolokythas O, Ferraioli G, Filice C, O’Donnell M (2017) Limitations and artifacts in shear-wave elastography of the liver. Biomed 7(2):81–9.

  46. Kawakami T, Mimura I, Shoji K, Tanaka T, Nangaku M (2014) Hypoxia and fibrosis in chronic kidney disease: crossing at pericytes. Kidney Int Suppl 4(1):107–112.

  47. Ormachea J, Parker KJ (2020) Elastography imaging: the 30 year perspective. Phys Med Biol 65(24):24TR06.

  48. Geddes C, Baxter G (2005) Renal impairment. Imaging 17(1):1–18.

    Article  Google Scholar 

  49. Leong SS, Wong JHD, Md Shah MN, Vijayananthan A, Jalalonmuhali M, Chow TK et al (2021) Shear wave elastography accurately detects chronic changes in renal histopathology. Nephrol (Carlton) 26(1):38–45. https://doi.org/10.1111/nep.13805

    Article  Google Scholar 

  50. Samir AE, Allegretti AS, Zhu Q, Dhyani M, Anvari A, Sullivan DA et al (2015) Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrol 16(1):119. https://doi.org/10.1186/s12882-015-0120-7

    Article  PubMed  PubMed Central  Google Scholar 

  51. Radulescu D, Peride I, Petcu LC, Niculae A, Checherita IA (2018) Supersonic shear wave ultrasonography for assessing tissue stiffness in native kidney. Ultrasound Med Biol 44(12):2556–2568. https://doi.org/10.1016/j.ultrasmedbio.2018.07.001

    Article  PubMed  Google Scholar 

  52. Liu QY, Duan Q, Fu XH, Fu LQ, Xia HW, Wan YL (2019) Value of elastography point quantification in improving the diagnostic accuracy of early diabetic kidney disease. World J Clin Cases 7(23):3945–3956. https://doi.org/10.12998/wjcc.v7.i23.3945

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gonçalves LM, Forte GC, Holz TG, Libermann LL, de Figueiredo CEP, Hochhegger B (2022) Shear wave elastography and Doppler ultrasound in kidney transplant recipients. Radiol Bras 55(1):19–23. https://doi.org/10.1590/0100-3984.2020.0148

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bolboacă SD, Elec FI, Elec AD, Muntean AM, Socaciu MA, Iacob G et al (2020) Shear-wave elastography variability analysis and relation with kidney allograft dysfunction: a single-center study. Diagnostics (Basel) 10(1). https://doi.org/10.3390/diagnostics10010041

  55. Sia C, Wong EWTY, Leo CCH, Wong WK, Teo BW, Ngoh LYC (2020) P0218 Shear wave elastography as a non-invasive marker of renal fibrosis in native diabetic kidney disease. Nephrol Dial Transplant 35(Supplement3):gfaa142–P0218p. https://doi.org/10.1093/ndt/gfaa142.P0218

    Google Scholar 

  56. Shi LQ, Sun JW, Miao HH, Zhou XL (2020) Comparison of supersonic shear wave imaging–derived renal parenchyma stiffness between diabetes mellitus patients with and without diabetic kidney disease. Ultrasound Med Biol 46(7):1630–1640. https://doi.org/10.1016/j.ultrasmedbio.2020.03.026

    Article  PubMed  Google Scholar 

  57. Yang X, Hou FL, Zhao C, Jiang CY, Li XM, Yu N (2020) The role of real-time shear wave elastography in the diagnosis of idiopathic nephrotic syndrome and evaluation of the curative effect. Abdom Radiol 45(8):2508–2517.

  58. Yang X, Yu N, Yu J, Wang H, Li X (2018) Virtual touch tissue quantification for assessing renal pathology in idiopathic nephrotic syndrome. Ultrasound Med Biol 44(7):1318–1326. https://doi.org/10.1016/j.ultrasmedbio.2018.02.012

    Article  PubMed  Google Scholar 

  59. Naesens M, Heylen L, Lerut E, Claes K, De Wever L, Claus F et al (2013) Intrarenal resistive index after renal transplantation. N Engl J Med 369(19):1797–806. https://doi.org/10.1056/NEJMoa1301064

  60. Viazzi F, Leoncini G, Derchi LE, Pontremoli R (2014) Ultrasound Doppler renal resistive index: a useful tool for the management of the hypertensive patient. J Hypertens 32(1):149–53. https://doi.org/10.1097/HJH.0b013e328365b29c

  61. Nickeleit V, Singh HK, Randhawa P, Drachenberg CB, Bhatnagar R, Bracamonte E et al (2018) The Banff Working Group classification of definitive polyomavirus nephropathy: morphologic definitions and clinical correlations. J Am Soc Nephrol 29(2):680–693. https://doi.org/10.1681/asn.2017050477

  62. Ghonge NP, Mohan M, Kashyap V, Jasuja S (2018) Renal allograft dysfunction: evaluation with shear-wave sonoelastography. Radiology 288(1):146–152. https://doi.org/10.1148/radiol.2018170577

  63. Yang JR, La Q, Ding XM, Song Y, Wang YY (2020) Using real-time sound touch elastography to monitor changes in transplant kidney elasticity. Clin Radiol 75(12):963.e1–.e6. https://doi.org/10.1016/j.crad.2020.08.013

  64. Barsoum NR, Elsisy AE, Mohamed MF, Hassan AA (2022) Role of shear wave elastography in assessment of chronic allograft nephropathy. Egypt J Radiol Nucl Med 53(1):100. https://doi.org/10.1186/s43055-022-00778-0

    Article  Google Scholar 

  65. Zelesco M, Abbott S, O’Hara S (2018) Pitfalls and sources of variability in two dimensional shear wave elastography of the liver: an overview. Sonography 5(1):20–28. https://doi.org/10.1002/sono.12132

  66. Takata T, Koda M, Sugihara T, Sugihara S, Okamoto T, Miyoshi K et al (2016) Renal shear wave velocity by acoustic radiation force impulse did not reflect advanced renal impairment. Nephrol (Carlton) 21(12):1056–1062. https://doi.org/10.1111/nep.12701

    Article  Google Scholar 

  67. Järv L, Kull I, Riispere Z, Kuudeberg A, Lember M, Ots-Rosenberg M (2019) Ultrasound elastography correlations between anthropometrical parameters in kidney transplant recipients. J Investig Med 67(8):1137. https://doi.org/10.1136/jim-2018-000970

    Article  PubMed  Google Scholar 

  68. Early HM, Cheang EC, Aguilera JM, Hirschbein JS, Fananapazir G, Wilson MD et al (2018) Utility of shear wave elastography for assessing allograft fibrosis in renal transplant recipients: a pilot study. J Ultrasound Med 37(6):1455–1465. https://doi.org/10.1002/jum.14487

  69. Barr RG, Ferraioli G, Palmeri ML, Goodman ZD, Garcia-Tsao G, Rubin J et al (2015) Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement. Radiology 276(3):845–861. https://doi.org/10.1148/radiol.2015150619

  70. Mulabecirovic A, Mjelle AB, Gilja OH, Vesterhus M, Havre RF (2018) Liver elasticity in healthy individuals by two novel shear-wave elastography systems-comparison by age, gender, BMI and number of measurements. PLoS ONE 13(9):e0203486. https://doi.org/10.1371/journal.pone.0203486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park SH, Kim SY, Suh CH, Lee SS, Kim KW, Lee SJ et al (2016) What we need to know when performing and interpreting US elastography. Clin Mol Hepatol 22(3):406–14. https://doi.org/10.3350/cmh.2016.0106

  72. Leong SS, Jalalonmuhali M, Md Shah MN, Ng KH, Vijayananthan A, Hisham R et al (2023) Ultrasound shear wave elastography for the evaluation of renal pathological changes in adult patients–A systematic review. Br J Radiol. 20220288. https://doi.org/10.1259/bjr.20220288

  73. Leong SS, Wong JHD, Shah MNM, Vijayananthan A, Jalalonmuhali M, Sharif NHM et al (2020) Stiffness and anisotropy effect on shear wave elastography: a phantom and in vivo renal study. Ultrasound Med Biol 46(1):34–45. https://doi.org/10.1016/j.ultrasmedbio.2019.08.011

    Article  PubMed  Google Scholar 

  74. Moon JH, Hwang JY, Park JS, Koh SH, Park SY (2018) Impact of region of interest (ROI) size on the diagnostic performance of shear wave elastography in differentiating solid breast lesions. Acta Radiol 59(6):657–663. https://doi.org/10.1177/0284185117732097

  75. Skerl K, Vinnicombe S, Giannotti E, Thomson K, Evans A (2015) Influence of region of interest size and ultrasound lesion size on the performance of 2D shear wave elastography (SWE) in solid breast masses. Clin Radiol 70(12):1421–1427. https://doi.org/10.1016/j.crad.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  76. Leong SS, Wong JHD, Rozalli FI, Yahya F, Tee YC, Yamin LSM et al (2023) 2D shear wave elastography for the assessment of quadriceps entheses—a methodological study. Skeletal Radiol. 1–9. https://doi.org/10.1007/s00256-023-04425-1

  77. Gennisson JL, Grenier N, Combe C, Tanter M (2012) Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol 38(9):1559–1567. https://doi.org/10.1016/j.ultrasmedbio.2012.04.013

    Article  PubMed  Google Scholar 

  78. Wang K, Lu X, Zhou H, Gao Y, Zheng J, Tong M et al (2019) Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic Hepatitis B: a prospective multicentre study. Gut 68(4):729–741. https://doi.org/10.1136/gutjnl-2018-316204

Download references

Acknowledgements

The authors would like to thank Dr Chow Tak Kuan from Department of Pathology, Faculty of Medicine, Universiti Malaya for his help in this review.

Funding

This study was supported by MyRa Grant (600- RMC/GPM LPHD 5/3 (067/2021) from Univeristi Teknologi MARA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sook Sam Leong.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This is a review article. No human participants involved.

Consent to participate

N/A.

Consent to publish

N/A.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, K.H., Wong, J.H.D. & Leong, S.S. Shear wave elastography in chronic kidney disease – the physics and clinical application. Phys Eng Sci Med 47, 17–29 (2024). https://doi.org/10.1007/s13246-023-01358-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-023-01358-w

Keywords

Navigation