Skip to main content
Log in

Double-sided asymmetric method for automated fetal heart rate baseline calculation

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jezewski J, Kupka T, Horoba K (2008) Extraction of fetal heart-rate signal as the time event series from evenly sampled data acquired using doppler ultrasound technique. IEEE Trans Biomed Eng 55:805–810. https://doi.org/10.1109/TBME.2007.903532

    Article  PubMed  Google Scholar 

  2. Rochard F, Schifrin BS, Goupil F et al (1976) Nonstressed fetal heart rate monitoring in the antepartum period. Am J Obstet Gynecol 126:699–706. https://doi.org/10.1016/0002-9378(76)90523-8

    Article  CAS  PubMed  Google Scholar 

  3. Trimbos JB, Keirse MJNC (1978) Observer variability in assessment of antepartum cardiotocograms. BJOG 85:900–906. https://doi.org/10.1111/J.1471-0528.1978.TB15851.X

    Article  CAS  Google Scholar 

  4. Rooth G, Huch A, Huch R (1987) Figo news. Int J Gynecol Obstet 25:159–167. https://doi.org/10.1016/0020-7292(87)90012-9

    Article  Google Scholar 

  5. Ayres-De-Campos D, Spong CY, Chandraharan E (2015) FIGO consensus guidelines on intrapartum fetal monitoring: cardiotocography. Int J Gynecol Obstet 131:13–24. https://doi.org/10.1016/J.IJGO.2015.06.020

    Article  Google Scholar 

  6. Moss AJ (1993) Measurement of the QT interval and the risk associated with QTc interval prolongation: a review. Am J Cardiol 72:B23–B25. https://doi.org/10.1016/0002-9149(93)90036-C

    Article  Google Scholar 

  7. Jadeja NM (2021) How to Read an EEG. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Tankisi H, Burke D, Cui L et al (2020) Standards of instrumentation of EMG. Clin Neurophysiol 131:243–258. https://doi.org/10.1016/J.CLINPH.2019.07.025

    Article  PubMed  Google Scholar 

  9. Stålberg E, van Dijk H, Falck B et al (2019) Standards for quantification of EMG and neurography. Clin Neurophysiol 130:1688–1729. https://doi.org/10.1016/J.CLINPH.2019.05.008

    Article  PubMed  Google Scholar 

  10. Creel DJ (2012) The electroretinogram and electro-oculogram: clinical applications. In: Kolb Helga, Fernandez E, Nelson R (eds) Webvision: the Organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City

    Google Scholar 

  11. Ayres-De-Campos D, Arulkumaran S (2015) FIGO consensus guidelines on intrapartum fetal monitoring: introduction. Int J Gynecol Obstet 131:3–4. https://doi.org/10.1016/J.IJGO.2015.06.017

    Article  Google Scholar 

  12. Schneider KTM, Beckmann MW, German Society of Gynecology et al (2014) S1-Guideline on the use of CTG during pregnancy and labor: long version – AWMF Registry No. 015/036. Geburtshilfe Frauenheilkd 74:721. https://doi.org/10.1055/S-0034-1382874

    Article  Google Scholar 

  13. Das S, Roy K, Saha CK (2011) A novel approach for extraction and analysis of variability of baseline. 2011 International conference on recent trends in information systems, ReTIS 2011. IEEE, New York, pp 336–339. https://doi.org/10.1109/RETIS.2011.6146892

    Chapter  Google Scholar 

  14. Ayres-de-campos D, Bernardes J, Garrido A et al (2000) SisPorto 2.0: a program for automated analysis of Cardiotocograms. J Maternal-Fetal Neonatal Med 9:311–318. https://doi.org/10.3109/14767050009053454

    Article  CAS  Google Scholar 

  15. Pardey J, Moulden M, Redman CWG (2002) A computer system for the numerical analysis of nonstress tests. Am J Obstet Gynecol 186:1095–1103. https://doi.org/10.1067/MOB.2002.122447

    Article  PubMed  Google Scholar 

  16. Mongelli M, Dawkins R, Chung T et al (1997) Computerised estimation of the baseline fetal heart rate in labour: the low frequency line. BJOG 104:1128–1133. https://doi.org/10.1111/J.1471-0528.1997.TB10935.X

    Article  CAS  Google Scholar 

  17. K Maeda (1980) Computer-aided fetal heart rate analysis and automatic fetal-distress diagnosis during labor and pregnancy utilizing external technique in fetal monitoring. MEDINFO 80.

  18. Lu Y, Wei S (2012) Nonlinear baseline estimation of FHR signal using empirical mode decomposition. International Conference on Signal Processing Proceedings ICSP 3:1645–1649. https://doi.org/10.1109/ICOSP.2012.6491896

    Article  Google Scholar 

  19. Wei SY, Lu YS, Liu XL (2012) Fetal heart rate analysis using a non-linear baseline and variability estimation method. 2012 5th International Conference on Biomedical Engineering and Informatics BMEI 2012 532:536. https://doi.org/10.1109/BMEI.2012.6513082

    Article  Google Scholar 

  20. Taylor GM, Mires GJ, Abel EW et al (2000) The development and validation of an algorithm for real-time computerised fetal heart rate monitoring in labour. BJOG 107:1130–1137. https://doi.org/10.1111/J.1471-0528.2000.TB11112.X

    Article  CAS  PubMed  Google Scholar 

  21. Boudet S, Houzé de l’Aulnoit A, Demailly R et al (2019) Fetal heart rate baseline computation with a weighted median filter. Comput Biol Med 114:103468. https://doi.org/10.1016/J.COMPBIOMED.2019.103468

    Article  PubMed  Google Scholar 

  22. Cazares SM (2002) Automated identification of abnormal patterns in the intrapartum cardiotocogram. Doctoral dissertation, University of Oxford

  23. Cazares S, Tarassenko L, Impey L et al (2001) Automated identification of abnormal cardiotocograms using neural network visualization techniques. Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings. IEEE, New York, pp 1629–1632. https://doi.org/10.1109/IEMBS.2001.1020526

    Chapter  Google Scholar 

  24. Yaosheng L, Xiaodong L, Shouyi W, Xiaolei L (2014) Fetal heart rate baseline estimation with analysis of fetal movement signal. Biomed Mater Eng 24:3763–3769. https://doi.org/10.3233/BME-141205

    Article  Google Scholar 

  25. Li X, Lu Y (2015) [An Algorithm for correcting fetal heart rate Baseline]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 32:1106–1112

    PubMed  Google Scholar 

  26. Jiménez L, González R, Gaitán MJ et al (2002) Computerized algorithm for baseline estimation of fetal heart rate. Comput Cardiol 29:477–480. https://doi.org/10.1109/CIC.2002.1166813

    Article  Google Scholar 

  27. Houze de L’Auinoit DL, Beuscart RJ, Brabant G et al (2005) Real-time analysis of the fetal heart rate. [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, New York, pp 1994–1995. https://doi.org/10.1109/IEMBS.1990.692125

    Chapter  Google Scholar 

  28. Houzé de l’Aulnoit A, Boudet S, Demailly R et al (2019) Automated fetal heart rate analysis for baseline determination and acceleration/deceleration detection: a comparison of 11 methods versus expert consensus. Biomed Signal Process Control 49:113–123. https://doi.org/10.1016/J.BSPC.2018.10.002

    Article  Google Scholar 

  29. He S, Zhang W, Liu L et al (2014) Baseline correction for Raman spectra using an improved asymmetric least squares method. Anal Methods 6:4402–4407. https://doi.org/10.1039/C4AY00068D

    Article  CAS  Google Scholar 

  30. Ye J, Tian Z, Wei H, Li Y (2020) Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum. Appl Opt 59:10933. https://doi.org/10.1364/AO.404863

    Article  PubMed  Google Scholar 

  31. Yang G, Dai J, Liu X et al (2020) Multiple constrained reweighted penalized least squares for spectral baseline correction. Appl Spectrosc 74:1443–1451. https://doi.org/10.1177/0003702819885002

    Article  CAS  PubMed  Google Scholar 

  32. Jiang X, Li F, Wang Q et al (2021) Baseline correction method based on improved adaptive iteratively reweighted penalized least squares for the x-ray fluorescence spectrum. Appl Opt 60:5707. https://doi.org/10.1364/AO.425473

    Article  PubMed  Google Scholar 

  33. Zhang F, Tang X, Tong A et al (2020) An automatic baseline correction method based on the penalized least squares Method. Sensors 20:2015. https://doi.org/10.3390/S20072015

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baek S-J, Park A, Ahn Y-J, Jaebum Choo (2014) Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 140:250–257. https://doi.org/10.1039/C4AN01061B

    Article  CAS  Google Scholar 

  35. Zhang ZM, Chen S, Liang YZ (2010) Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 135:1138–1146. https://doi.org/10.1039/B922045C

    Article  CAS  PubMed  Google Scholar 

  36. Barzideh F, Urdal J, Engan K et al (2018) Estimation of missing data in fetal heart rate signals using shift-invariant dictionary. European Signal Processing Conference 2018-September. IEEE, New York, pp 762–766. https://doi.org/10.23919/EUSIPCO.2018.8553110

    Chapter  Google Scholar 

  37. Spilka J, Chudáček V, Koucký M et al (2012) Using nonlinear features for fetal heart rate classification. Biomed Signal Process Control 7:350–357. https://doi.org/10.1016/J.BSPC.2011.06.008

    Article  Google Scholar 

  38. Spilka J, Georgoulas G, Karvelis P et al (2014) Discriminating normal from “abnormal” pregnancy cases using an automated FHR evaluation method. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8445 LNCS:521–531. https://doi.org/10.1007/978-3-319-07064-3_45/COVER

  39. Feng G, Quirk JG, Djuric PM (2017) Recovery of missing samples in fetal heart rate recordings with Gaussian processes. 25th European Signal Processing Conference, EUSIPCO. IEEE, New York, pp 261–265. https://doi.org/10.23919/EUSIPCO.2017.8081209

    Chapter  Google Scholar 

  40. Oikonomou VP, Spilka J, Stylios C, Lhostka L (2013) An adaptive method for the recovery of missing samples from FHR time series. CBMS. IEEE, New York, pp 337–342. https://doi.org/10.1109/CBMS.2013.6627812

    Chapter  Google Scholar 

  41. Singstad B (2022) Norwegian Endurance Athlete ECG Database (version 1.0.0). PhysioNet

  42. Goldberger AL, Amaral LAN, Glass L et al (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101:e215–e220

    Article  CAS  PubMed  Google Scholar 

  43. von Steinburg SP, Boulesteix AL, Lederer C et al (2013) What is the normal fetal heart rate? PeerJ 1:e82. https://doi.org/10.7717/PEERJ.82

    Article  Google Scholar 

  44. Stock JH (2001) Time series: economic forecasting. International encyclopedia of the social & behavioral sciences. Elsevier, Amsterdan, pp 15721–15724

    Chapter  Google Scholar 

  45. PHC Eilers, HFM Boelens (2005) Baseline correction with asymmetric least squares smoothing. Leiden University Medical Centre report

  46. Erb D (2021) Pybaselines: a python library of algorithms for the baseline correction of experimental data

  47. Laszuk D (2017) Python implementation of Empirical Mode Decomposition algorithm. GitHub Repository.

  48. Miller RG (1981) Simultaneous Statistical Inference. Springer, Berlin

    Book  Google Scholar 

  49. Mittelhammer RC, Judge GG, Miller DJ (2002) The multivariate normal linear regression model: inference. Econometric Foundations. Cambridge University Press, Cambridge, pp 61–85

    Google Scholar 

  50. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. 8:3–62

    Google Scholar 

  51. PHILIPS (2011) Instructions for Use Avalon Fetal Monitor FM20/30, FM40/50

  52. Spilka J, Chudáček V, Janků P et al (2014) Analysis of obstetricians’ decision making on CTG recordings. J Biomed Inform 51:72–79. https://doi.org/10.1016/J.JBI.2014.04.010

    Article  PubMed  Google Scholar 

  53. Sabiani L, le Dû R, Loundou A et al (2015) Intra- and interobserver agreement among obstetric experts in court regarding the review of abnormal fetal heart rate tracings and obstetrical management. Am J Obstet Gynecol 213:856-e1-856-e8. https://doi.org/10.1016/J.AJOG.2015.08.066

    Article  PubMed  Google Scholar 

  54. Alkan A, Akben SB (2011) Use of K-means clustering in migraine detection by using EEG records under flash stimulation. Int J Phys Sci 6:641–650. https://doi.org/10.5897/IJPS11.174

    Article  Google Scholar 

  55. Oğuz FE, Alkan A, Schöler T (2023) Emotion detection from ECG signals with different learning algorithms and automated feature engineering. Signal Image Video Process 17:1–9. https://doi.org/10.1007/S11760-023-02606-Y/TABLES/3

    Article  Google Scholar 

  56. Muhammed Sünnetci K, Alkan A, Kubilay Muhammed Sünnetci C (2022) Lung cancer detection by using probabilistic majority voting and optimization techniques. Int J Imaging Syst Technol 32:2049–2065. https://doi.org/10.1002/IMA.22769

    Article  Google Scholar 

  57. Sunnetci KM, Kaba E, Celiker FB, Alkan A (2023) Deep Network-Based comprehensive parotid gland tumor detection. Acad Radiol. https://doi.org/10.1016/J.ACRA.2023.04.028

    Article  PubMed  Google Scholar 

  58. Mulder EJH, Visser GHA, Bekedam DJ, Prechtl HFR (1987) Emergence of behavioural states in fetuses of type-1-diabetic women. Early Hum Dev 15:231–251. https://doi.org/10.1016/0378-3782(87)90082-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Dr. Mordechai Bardicef, Dr. Amit Damti, Dr. Yael Goldberg, Dr. Eliyahu Gutterman, and Dr. Maayan Lahav-Sher for annotating the clinical FHR signals.

Funding

This work was supported by the Mark S. Kahn Family Fund.

Author information

Authors and Affiliations

Authors

Contributions

NK, RS and YY conceived and designed the research. RS performed the experiments and the analysis. RS and NK designed the algorithm. RS drafted the manuscript. NK, YY and RK edited and revised the manuscript. RS, NK, YY and RK approved the final version.

Corresponding authors

Correspondence to Yael Yaniv or Noam Keidar.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Carmel Hospital Institutional Review Board (0001-22-CMC).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapira, R., Kedar, R., Yaniv, Y. et al. Double-sided asymmetric method for automated fetal heart rate baseline calculation. Phys Eng Sci Med 46, 1779–1790 (2023). https://doi.org/10.1007/s13246-023-01337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-023-01337-1

Keywords

Navigation