Skip to main content
Log in

Material decomposition using dual-energy CT with unsupervised learning

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Material decomposition (MD) is an application of dual-energy computed tomography (DECT) that decomposes DECT images into specific material images. However, the direct inversion method used in MD often amplifies noise in the decomposed material images, resulting in lower image quality. To address this issue, we propose an image-domain MD method based on the concept of deep image prior (DIP). DIP is an unsupervised learning method that can perform different tasks without using a large training dataset with known targets (i.e., basis material images). We retrospectively recruited patients who underwent non-contrast brain DECT scans and investigated the feasibility of using the proposed DIP-based method to decompose DECT images into two (i.e., bone and soft tissue) and three (i.e., bone, soft tissue, and fat) basis materials. We evaluated the decomposed material images in terms of signal-to-noise ratio (SNR) and modulation transfer function (MTF). The proposed DIP-based method showed greater improvement in SNR in the decomposed soft-tissue images compared to the direct inversion method and the iterative method. Moreover, the proposed method produced similar MTF curves in both two- and three-material decompositions. Additionally, the proposed DIP-based method demonstrated better separation ability than the other two studied methods in the case of three-material decomposition. Our results suggest that the proposed DIP-based method is capable of unsupervisedly generating high-quality basis material images from DECT images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol 18:555–569

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yu L, Christner JA, Leng S et al (2011) Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 38:6371–6379

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schulz B, Kuehling K, Kromen W et al (2012) Automatic bone removal technique in whole-body dual-energy CT angiography: performance and image quality. AJR Am J Roentgenol 199:646–650

    Article  Google Scholar 

  4. Patino M, Prochowski A, Agrawal MD et al (2016) Material separation using dual-energy CT: current and emerging applications. Radiographics 36:1087–1105

    Article  PubMed  Google Scholar 

  5. Jacobsen MC, Cressman ENK, Tamm EP et al (2019) Dual-energy CT: lower limits of iodine detection and quantification. Radiology 292:414–419

    Article  PubMed  Google Scholar 

  6. Alvarez RE, MacOvski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744

    Article  CAS  PubMed  Google Scholar 

  7. Kalender WA, Klotz E, Kostaridou L (1988) An algorithm for noise suppression in dual energy CT material density images. IEEE Trans Med Imaging 7:218–224

    Article  CAS  PubMed  Google Scholar 

  8. Siegel MJ, Bhalla S, Cullinane M (2021) Dual-energy CT material decomposition in pediatric thoracic oncology. Radiol Imaging Cancer 3:e200097

    Article  PubMed  PubMed Central  Google Scholar 

  9. Agrawal MD, Pinho DF, Kulkarni NM et al (2014) Oncologic applications of dual-energy CT in the abdomen. Radiographics 34:589–612

    Article  PubMed  Google Scholar 

  10. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. phantom studies. Med Phys 13:334–339

    Article  CAS  PubMed  Google Scholar 

  11. Cong W, De Man B, Wang G (2022) Projection decomposition via univariate optimization for dual-energy CT. J Xray Sci Technol 30:725–736

    PubMed  PubMed Central  Google Scholar 

  12. Long Y, Fessler JA (2014) Multi-material decomposition using statistical image reconstruction for spectral CT. IEEE Trans Med Imaging 33:1614–1626

    Article  PubMed  Google Scholar 

  13. Mendonca PRS, Lamb P, Sahani DV (2014) A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans Med Imaging 33:99–116

    Article  PubMed  Google Scholar 

  14. Szczykutowicz TP, Chen GH (2010) Dual energy CT using slow kVp switching acquisition and prior image constrained compressed sensing. Phys Med Biol 55:6411–6429

    Article  PubMed  Google Scholar 

  15. Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6:418–425

    Article  CAS  PubMed  Google Scholar 

  16. Niu T, Dong X, Petrongolo M, Zhu L (2014) Iterative image-domain decomposition for dual-energy CT. Med Phys 41:041901

    Article  PubMed  Google Scholar 

  17. Ding Q, Niu T, Zhang X, Long Y (2018) Image-domain multimaterial decomposition for dual-energy CT based on prior information of material images. Med Phys 45:3614–3626

    Article  Google Scholar 

  18. Lyu Q, O’Connor D, Niu T, Sheng K (2019) Image-domain multimaterial decomposition for dual-energy computed tomography with nonconvex sparsity regularization. J Med Imaging 6:044004

    Article  Google Scholar 

  19. Jiang Y, Zhang X, Sheng K et al (2020) Noise suppression in image-domain multi-material decomposition for dual-energy CT. IEEE Trans Biomed Eng 67:523–535

    Article  PubMed  Google Scholar 

  20. Yasaka K, Akai H, Kunimatsu A et al (2018) Deep learning with convolutional neural network in radiology. Jpn J Radiol 36:257–272

    Article  PubMed  Google Scholar 

  21. Currie G, Hawk KE, Rohren E et al (2019) Machine learning and deep learning in medical imaging: intelligent imaging. J Med Imaging Radiat Sci 50:477–487

    Article  PubMed  Google Scholar 

  22. Qadri SF, Ai D, Hu G et al (2019) Automatic deep feature learning via patch-based deep belief network for vertebrae segmentation in CT images. Appl Sci 9:69

    Article  Google Scholar 

  23. Ahmad M, Ai D, Xie G et al (2019) Deep belief network modeling for automatic liver segmentation. IEEE Access 7:20585–20595

    Article  Google Scholar 

  24. Qadri SF, Shen L, Ahmad M et al (2021) OP-convNet: a patch classification-based framework for CT vertebrae segmentation. IEEE Access 9:158227–158240

    Article  Google Scholar 

  25. Xu Y, Yan B, Chen J et al (2018) Projection decomposition algorithm for dual-energy computed tomography via deep neural network. J Xray Sci Technol 26:361–377

    PubMed  Google Scholar 

  26. Zhang W, Zhang H, Wang L et al (2019) Image domain dual material decomposition for dual-energy CT using butterfly network. Med Phys 46:2037–2051

    Article  PubMed  Google Scholar 

  27. Su T, Sun X, Yang J et al (2022) DIRECT-Net: a unified mutual-domain material decomposition network for quantitative dual-energy CT imaging. Med Phys 49:917–934

    Article  PubMed  Google Scholar 

  28. Lempitsky V, Vedaldi A, Ulyanov D (2018) Deep image prior. https://arxiv.org/abs/1711.10925

  29. Liu CK, Huang HM (2021) Unsupervised deep learning based image outpainting for dual-source, dual-energy computed tomography. Radiat Phys Chem 188:109635

    Article  CAS  Google Scholar 

  30. Liu X, Yu L, Primak AN, McCollough CH (2009) Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 36:1602–1609

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. https://arxiv.org/abs/1505.04597

  32. Kingma DP, Ba JL (2015) Adam: A method for stochastic optimization. https://arxiv.org/abs/1412.6980

  33. Samei E, Flynn MJ, Reimann DA (1998) A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med Phys 25:102–113

    Article  CAS  PubMed  Google Scholar 

  34. Magnusson M, Alm Carlsson G, Sandborg M et al (2021) Optimal selection of base materials for accurate dual-energy computed tomography: comparison between the Alvarez–Macovski method and DIRA. Radiat Prot Dosimetry 195:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou Q, Zhou C, Hu H et al (2019) Towards the automation of deep image prior. https://arxiv.org/abs/1911.07185

  36. Wang H, Li T, Zhuang Z et al (2021) Early stopping for deep image prior. https://arxiv.org/abs/2112.06074

Download references

Funding

This work was supported by MOST 111-2221-E-002-069 from Ministry of Science Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsuan-Ming Huang.

Ethics declarations

Competing interest

The authors have not disclosed any competing interests.

Ethical approval

Ethics (IRB No. 230213) approval was approved by Institutional Review Board Committee B Changhua Christian Hospital.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HY., Liu, CK. & Huang, HM. Material decomposition using dual-energy CT with unsupervised learning. Phys Eng Sci Med 46, 1607–1617 (2023). https://doi.org/10.1007/s13246-023-01323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-023-01323-7

Keywords

Navigation