Skip to main content

Advertisement

Log in

Development and evaluation of photon-counting Cd0.875Zn0.125Te0.98Se0.02 detector for measuring bone mineral density

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Cadmium zinc telluride (CZT) has been actively researched and developed by researchers in various fields. In medical applications, especially photon-counting, CZT enables improved image quality, multi-material decomposition, and improved dose efficiency. Moreover, band gap engineering and selenium addition on CZT improved electrical, spectroscopic and structural properties, thereby supporting performance of CZT as a photon-counting detector. In this study, it is shown that Cd0.875Zn0.125Te0.98Se0.02 (CZTS) shows sufficient performance without loss of detection efficiency. We carried out a study involving the application of this CZTS on calculating bone mineral density (BMD) values, because this application has a novelty of new material for BMD sensor which follows the CdTe- or CdZnTe- based BMD detector. Anatomical images from different energy bins contained different information of attenuation although the images were taken in the same region at the same time. Moreover, calculated BMD values had a proper tendency depending on the amount of bone in that region. The final BMD value was 1.1972 g/cm2, which is close to the real value of 1.2 g/cm2. The introduction with a bone filter and a smaller pixel size will improve the accuracy and precision of photon-counting CZTS detectors for measuring BMD values. However, in this study the CZTS showed the feasibility that a photon-counting CZTS detector can help the measurement of BMD values and the diagnosis of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [B. Park], upon reasonable request.

References

  1. James RB, Schlesinger TE, Lund J, Schieber M (1995) semiconductors and semimetals semiconductors for room temperature nuclear detector applications. Elsevier, New York

    Google Scholar 

  2. Iniewski K (2014) CZT detector technology for medical imaging. J Instrum 9(11):C11001. https://doi.org/10.1088/1748-0221/9/11/c11001

    Article  Google Scholar 

  3. Sorde SD, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P (2009) Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9(05):3491–3526. https://doi.org/10.3390/s90503491

    Article  CAS  Google Scholar 

  4. Fatemi S, Gong CH, Bortolussi S, Marni C, Postuma I, Bettelli M, Benassi G, Zambelli N, Zappettini A, Tang XB, Altieri S, Protti N (2019) Innovative 3D sensitive CdZnTe solid state detector for dose monitoring in boron neutron capture therapy (BNCT). Nucl Instrum Meth A 936:50–51. https://doi.org/10.1016/j.nima.2018.09.135

    Article  CAS  Google Scholar 

  5. Watanabe S, Tajima H, Fukazawa Y, Ichinohe Y, Takeda S, Enoto T, Fukuyama T, Furui S, Genba K, Hagino K, Harayama A, Kuroda Y, Matsuura D, Nakamura R, Nakazawa K, Noda H, Okada H, Ohta M, Onishi M, Saito S, Sato G, Sato T, Takahashi T, Tanaka T, Togo A, Tomizuka S (2014) The Si/CdTe semiconductor Compton camera of the ASTRO-H soft gamma-ray detector (SGD). Nucl Instrum Meth A 765:192–201. https://doi.org/10.1016/j.nima.2014.05.127

    Article  CAS  Google Scholar 

  6. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D (2018) Photon-counting CT: technical principles and clinical prospects. Radiology 289(2):293–312. https://doi.org/10.1148/radiol.2018172656

    Article  PubMed  Google Scholar 

  7. Fredenberg E, Hemmendorff M, Cederström B, Åslund M, Danielsson M (2010) Contrast-enhanced spectral mammography with a photon-counting detector. Med Phys 37(5):2017–2029. https://doi.org/10.1118/1.3371689

    Article  CAS  PubMed  Google Scholar 

  8. John PC (2017) Photon-counting detectors for digital radiography and x-ray computed tomography. Proc Spie 10313:392–394. https://doi.org/10.1117/12.2283929

    Article  Google Scholar 

  9. Gregoire B, Géraldine P, Alexandre B, Moreau-Triby Caroline, Marc J, Christian S (2018) Four-minute Bone SPECT using Large-field Cadmium-Zinc-Telluride Camera. Clin Nucl Med. https://doi.org/10.1097/RLU.0000000000002062

    Article  PubMed  Google Scholar 

  10. Danielsson M, Persson M, Sjölin M (2021) Photon-counting Xray detectors for CT. Phys Med Biol. https://doi.org/10.1088/1361-6560/abc5a5

    Article  PubMed  Google Scholar 

  11. Roessl E, Proksa R (2007) K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol 52(15):4679. https://doi.org/10.1088/0031-9155/52/15/020

    Article  CAS  PubMed  Google Scholar 

  12. Lindqvist M, Cederstrom B, Chmill V, Danielsson M, Hasegawa B (2001) Evaluation of a photon-counting X-ray imaging system. IEEE Trans Nucl Sci 48:1530–1536. https://doi.org/10.1109/23.958392

    Article  Google Scholar 

  13. Chmeissani M, Frojdh C (2004) First experimental tests with a CdTe photon counting pixel detector hybridized with a medipix2 readout chip. IEEE Trans Nucl Sci 51:2379–2385. https://doi.org/10.1109/TNS.2004.832324

    Article  CAS  Google Scholar 

  14. Danielsson M, Bornefalk H (2000) Dose-efficient system or digital mammography. Proc Spie 3977:239–249. https://doi.org/10.1117/12.384498

    Article  Google Scholar 

  15. Hwang S, Yu H, Bolotnikov AE, James RB, Kim K (2019) Anomalous Te inclusion size and distribution in CdZnTeSe. IEEE Trans Nucl Sci 66:2329. https://doi.org/10.1109/TNS.2019.2944969

    Article  CAS  Google Scholar 

  16. Park B, Kim Y, Seo J, Byun J, Dedic V, Franc J, Bolotnikov AE, James RB, Kim K (2022) Bandgap engineering of CdxZn1−xTe1−ySey (0 < x < 0.27,0 < y < 0.026),. Nucl Instrum Meth A. https://doi.org/10.1016/j.nima.2022.166836

    Article  Google Scholar 

  17. Roy UN, Camarda GS, Cui Y, Gul R, Hossain A, Yang G, Zazvorka J, Dedic V, Franc J, James RB (2019) Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci Rep 9(1):1–7. https://doi.org/10.1038/s41598-018-38188-w

    Article  CAS  Google Scholar 

  18. Roy UN, Camarda GS, Cui Y, Gul R, Yang G, Zazvorka J, Dedic V, Franc J, James RB (2019) Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci Rep 9(1):1–7. https://doi.org/10.1038/s41598-019-43778-3

    Article  CAS  Google Scholar 

  19. Roy UN, Camarda GS, Cui Y, James RB (2019) High-resolution virtual Frisch grid gamma-ray detectors based on as-grown CdZnTeSe with reduced defects. Appl Phys Lett. https://doi.org/10.1063/15109119

    Article  Google Scholar 

  20. Wear J, Buchholz M, Payne RK, Gorsuch D, Bisek J, Ergun DL, Grosholz J, Falk R (2000) CZT detector for dual-energy x-ray absorptiometry (DEXA). Proc SPIE 4142:175–188. https://doi.org/10.1117/12.410561

    Article  Google Scholar 

  21. Taguchi K, Iwanczyk JS (2013) Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys. https://doi.org/10.1118/14820371

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tothney MP, Martin FP, Xia Y, Beaumont M, Davis C, Ergun D, Fay L, Ginty F, Kochhar S, Wacker W, Rezzi S (2012) Precision of GE lunar iDXA for the measurement of total and regional body composition in nonobese adults. J Clin Densitom 15(4):399–404. https://doi.org/10.1016/j.jocd.2012.02.009

    Article  Google Scholar 

  23. Faby S, Kuchenbecker S, S. sawall, D. Simons, H. P. Schlemmer, M. Lell, M. Kchelrieß, (2015) Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys 42(7):4349–4366. https://doi.org/10.1118/1.4922654

    Article  PubMed  Google Scholar 

  24. Park B, Kim Y, Seo J, Kim K (2022) Effectiveness of parylene coating on CdZnTe surface after optimal passivation. Nucl Eng Technol. https://doi.org/10.1016/j.net.2022.08.016

    Article  Google Scholar 

  25. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients.

  26. Cranley K (1997) Catalogue of diagnostic x-ray spectra and other data. Instit Phys Eng Med Rep. https://doi.org/10.1016/S1078-8174(98)80053-9

    Article  Google Scholar 

  27. Flohr T, Petersilka M, Henning A, Ulzheimer S, Freda J, Schmidt B (2020) Photon-counting CT review. Phys Medica 79:126–136. https://doi.org/10.1016/j.ejmp.2020.10.030

    Article  Google Scholar 

  28. Han J, Kim H, Kim D, Yun S, Youn H, Kam S, Tanguay J, Cunningham IA (2014) Single-shot dual-energy x-ray imaging with a flat-panel sandwich detector for preclinical imaging. Curr Appl Phys 14(12):1734–1742. https://doi.org/10.1016/j.cap.2014.10.012

    Article  Google Scholar 

  29. Jakubek J (2007) Data processing and image reconstruction methods for pixel detectors. Nucl Instrum Meth A 576(1):223–234. https://doi.org/10.1016/j.nima.2007.01.157

    Article  CAS  Google Scholar 

  30. Vavrik D, Holy T, Jakubek J, Pospisil S, Vykdal Z, Dammer J (2006) Direct thickness calibration: way to radiographic study of soft tissues. Astropart Part Space. https://doi.org/10.1142/9789812773678_0122

    Article  Google Scholar 

  31. Juntunen MAK, Inkinen SI, Ketola JH, Kotiaho A, Kauppinen M, Winkler A, Nieminen MT (2020) Framework for photon counting quantitative material decomposition. IEEE T Med Imaging 39(1):35–47. https://doi.org/10.1109/TMI.2019.2914370

    Article  Google Scholar 

  32. Kim J, Kim D, Kim S, Yun S, Youn H, Jeon H, Kim H (2017) Linear modeling of single-shot dual-energy x-ray imaging using a sandwich detector. J Instrum. https://doi.org/10.1088/1748-0221/12/01/C01029

    Article  Google Scholar 

  33. Yun S, Han J, Kim D, Youn H, Kim H, Tanguay J, Cunningham IA (2014) Feasibility of active sandwich detectors for single-shot dual-energy imaging Proc. SPIE. https://doi.org/10.1117/12.2043368

    Article  Google Scholar 

  34. International Atomic Energy Agency, Dual energy X ray absorptiometry for bone mineral density and body composition assessment: IAEA Human Health Series No. 15. International Atomic Energy Agency (2011).

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2018M2A2B3A01072384, RS-2022-00165164) and by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000070, Promoting of expert for energy industry advancement in the field of radiation technology).

Funding

National Research Foundation of Korea, 2020R1A2C2007376, B. Park, National research foundation of korea, RS-2022-00165164, J. Seo, Korea Institute of Energy Technology Evaluation and Planning, 20214000000070, B. Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Park.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, J., Kim, Y., Seo, J. et al. Development and evaluation of photon-counting Cd0.875Zn0.125Te0.98Se0.02 detector for measuring bone mineral density. Phys Eng Sci Med 46, 245–253 (2023). https://doi.org/10.1007/s13246-022-01213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01213-4

Keywords

Navigation