Skip to main content
Log in

Evaluation of HyperArc™ using film and portal dosimetry quality assurance

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

HyperArc™ is a stereotactic radiotherapy modality designed for targeting multiple brain metastases using a single isocenter with multiple non-coplanar arcs. This study aimed to assess the efficacy of two patient-specific quality assurance methods, film and the Varian Portal Dosimetry System with Varian’s HyperArc™ technique and raise important considerations in the customisation of patient-specific quality assurance to accommodate HyperArc™ delivery. Assessment criteria included gamma analysis and mean dose at full width half maximum. The minimum metastasis size, maximum off-axis distance and suitable energy were identified and validated. Patient-specific quality assurance procedures were applied to a range of clinically relevant brain metastasis plans. Initial investigation into energy selection showed no significant differences in gamma pass rates using 6MV, 6MV FFF, or 10MV FFF for metastasis sizes greater than 15 mm diameter at the isocenter. Gamma pass rates (2%/2mm) for 15 mm metastases at the isocenter for all energies were greater than 96.0% for portal dosimetry and greater than 98.7% for film. Fields of size 15 mm placed at various distances (10–70 mm) from the isocenter resulted in a maximum mean dose difference of 1.5% between film and planned. Clinically relevant plans resulted in a maximum mean dose difference for selected metastases of 1.0% between film and plan and a maximum point dose difference of 2.9% between portal dose and plan. Portal dose image prediction was a quick and convenient quality assurance tool for metastases larger than 15 mm near the isocenter but provided diminished geometrical relevance for off-axis metastases. Film QA required exacting procedures but offered the ability to assess the accuracy of geometrical targeting for off-axis metastases and provided dosimetric accuracy for metastases to well below 15 mm diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Icon Cancer Care, Gold Coast University Hospital, QLD, Australia.

  2. ICON Cancer Care, Epworth, Vic, Australia.

References

  1. Schouten LJ, Rutten J, Huveneers HAM, Twijnstra A (2002) Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. https://doi.org/10.1002/cncr.10541

    Article  PubMed  Google Scholar 

  2. Soffietti R et al (2017) Diagnosis and treatment of brain metastases from solid tumors: Guidelines from the European Association of neuro-oncology (EANO). Neuro Oncol 19(2):162–174. https://doi.org/10.1093/neuonc/now241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao B, Jin J, Wen N, Huang Y, Siddiqui MS (2014) Prescription to 50–75% isodose line may be optimum for linear accelerator based radiosurgery of cranial lesions. J Radiosurg SBRT 3(2):139–147

    PubMed  PubMed Central  Google Scholar 

  4. Yamamoto M et al (2014) Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. https://doi.org/10.1016/S1470-2045(14)70061-0

    Article  PubMed  Google Scholar 

  5. Scoccianti S et al (2015) Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol. https://doi.org/10.1016/j.radonc.2015.01.016

    Article  PubMed  Google Scholar 

  6. Alongi F et al (2016) Stereotactic radiosurgery for intracranial metastases: linac-based and gamma-dedicated unit approach. Expert Rev Anticancer Ther 16(7):731–740. https://doi.org/10.1080/14737140.2016.1190648

    Article  CAS  PubMed  Google Scholar 

  7. Pudsey L et al (2022) Current status of intra-cranial stereotactic radiotherapy and stereotactic radiosurgery in Australia and New Zealand: key considerations from a workshop and surveys. Phys Eng Sci Med 45(1):251–259. https://doi.org/10.1007/s13246-022-01108-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. “Gamma Knife | EdCaN. https://www.edcan.org.au/edcan-learning-resources/supporting-resources/radiotherapy/treatment-delivery/gamma-knife . Accessed 18 July 2021

  9. Reyes DK, Pienta KJ (2015) The biology and treatment of oligometastatic cancer. Oncotarget 6(11):8491. https://doi.org/10.18632/ONCOTARGET.3455

    Article  PubMed  PubMed Central  Google Scholar 

  10. Snyder KC, Xhaferllari I, Huang Y, Siddiqui MS, Chetty IJ, Wen N (2018) Evaluation and verification of the QFix EncompassTM couch insert for intracranial stereotactic radiosurgery. J Appl Clin Med Phys 19(4):222–229. https://doi.org/10.1002/acm2.12387

    Article  PubMed  PubMed Central  Google Scholar 

  11. Varian Medical Systems, “TrueBeam STx System,” (2015). https://varian.force.com/servlet/servlet.FileDownload?retURL=%2Fapex%2FCpEventPresList%3Fid%3Da0OE000000pZaMdMAK&file=00PE000000VdZ5OMAV

  12. Solberg TD et al (2012) Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: executive summary. Pract Radiat Oncol 2(1):2–9. https://doi.org/10.1016/J.PRRO.2011.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  13. Halvorsen PH et al (2017) AAPM-RSS medical physics practice guideline 9.a. for SRS-SBRT. J Appl Clin Med Phys 18(5):10–21. https://doi.org/10.1002/ACM2.12146

    Article  PubMed  PubMed Central  Google Scholar 

  14. Palmans H, Andreo P, Huq MS, Seuntjens J, Christaki KE, Meghzifene A (2018) Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRS-483, the IAEA–AAPM international Code of Practice for reference and relative dose determination. Med Phys 45(11):e1123–e1145. https://doi.org/10.1002/mp.13208

    Article  PubMed  Google Scholar 

  15. Borca VC et al (2013) Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J Appl Clin Med Phys. https://doi.org/10.1120/jacmp.v14i2.4111

    Article  PubMed Central  Google Scholar 

  16. Nguyen D, Josserand Pietri F, Hajji Z, Fafi S, Khodri M (2013) Evaluation of varian portal dose image prediction (PDIP) ‘pre-configuration 10’ package for volumetric modulated arc therapy (VMAT) treatments. Phys Medica 29:e21. https://doi.org/10.1016/j.ejmp.2013.08.069

    Article  Google Scholar 

  17. Howard ME, Herman MG, Grams MP (2020) Methodology for radiochromic film analysis using FilmQA Pro and ImageJ. PLoS ONE 15(5):e0233562. https://doi.org/10.1371/JOURNAL.PONE.0233562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varian (2017) Eclipse Photon and Electron Algorithms 15.5 Reference Guide Document, no

  19. Miri N, Keller P, Zwan BJ, Greer P (2016) EPID-based dosimetry to verify IMRT planar dose distribution for the aS1200 EPID and FFF beams. J Appl Clin Med Phys 17(6):292–304. https://doi.org/10.1120/JACMP.V17I6.6336

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barnes MP, Greer PB (2017) Evaluation of the TrueBeam machine performance check (MPC) beam constancy checks for flattened and flattening filter-free (FFF) photon beams. J Appl Clin Med Phys 18:139–150. https://doi.org/10.1002/acm2.12016

    Article  PubMed  Google Scholar 

  21. Palmer AL, Dimitriadis A, Nisbet A, Clark CH (2015) Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification. Phys Med Biol. https://doi.org/10.1088/0031-9155/60/22/8741

    Article  PubMed  Google Scholar 

  22. LAP LASER, "EASY CUBE, Water-Equivalent Multi-Modul Ar Phantom for QA in RT”, https://www.lap-laser.com/products/easy-cube/ . Accessed 18 Oct 2022

  23. Kulmala A, Ikonen T, Pyyry J, Tenhunen M (2018) Quality assurance of HyperArc TM radiotherapy using a robust film dosimetry protocol. https://doi.org/10.3252/pso.eu.ESTRO37.2018

  24. Lewis D, Micke A, Yu X, Chan MF (2012) An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys. https://doi.org/10.1118/1.4754797

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wen N et al (2016) Precise film dosimetry for stereotactic radiosurgery and stereotactic body radiotherapy quality assurance using Gafchromic™ EBT3 films. Radiat Oncol. https://doi.org/10.1186/s13014-016-0709-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mathot M, Sobczak S, Hoornaert MT (2014) Gafchromic film dosimetry: four years experience using FilmQA Pro software and Epson flatbed scanners. Phys Medica 30(8):871–877. https://doi.org/10.1016/j.ejmp.2014.06.043

    Article  CAS  Google Scholar 

  27. Micke A, Lewis D, Yu X (2011) SU-E-I-63: multi-channel film dosimetry with non-uniformity correction. Med Phys 38:3410. https://doi.org/10.1118/1.3611636

    Article  Google Scholar 

  28. Lewis D, Devic S (2015) Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system. Med Phys 42(10):5692–5701. https://doi.org/10.1118/1.4929563

    Article  PubMed  Google Scholar 

  29. Calvo-Ortega J-F, Moragues-Femenía S, Laosa-Bello C, José-Maderuelo SS, Casals-Farran J (2019) A closer look at the conventional Winston-Lutz test: analysis in terms of dose. Rep Pract Oncol Radiother 24(5):421. https://doi.org/10.1016/J.RPOR.2019.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  30. Klein EE et al (2009) Task group 142 report: quality assurance of medical acceleratorsa. Med Phys 36(9):4197–4212. https://doi.org/10.1118/1.3190392

    Article  PubMed  Google Scholar 

  31. Li Y, Chen L, Zhu J, Liu X (2017) The combination of the error correction methods of GAFCHROMIC EBT3 film. PLoS ONE. https://doi.org/10.1371/journal.pone.0181958

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miura H et al (2016) Gafchromic EBT-XD film: dosimetry characterization in high-dose, volumetric-modulated arc therapy. J Appl Clin Med Phys. https://doi.org/10.1120/jacmp.v17i6.6281

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lewis DF, Chan MF (2016) Technical Note: on GAFChromic EBT-XD film and the lateral response artifact. Med Phys. https://doi.org/10.1118/1.4939226

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miften M et al (2018) Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys 45(4):e53–e83. https://doi.org/10.1002/MP.12810

    Article  PubMed  Google Scholar 

  35. Bresciani S et al (2018) Comparison of two different EPID-based solutions performing pretreatment quality assurance: 2D portal dosimetry versus 3D forward projection method. Phys Medica 52:65–71. https://doi.org/10.1016/J.EJMP.2018.06.005

    Article  Google Scholar 

  36. Crowe SB et al (2016) Technical Note: Relationships between gamma criteria and action levels: results of a multicenter audit of gamma agreement index results. Med Phys 43(3):1501–1506. https://doi.org/10.1118/1.4942488

    Article  PubMed  Google Scholar 

  37. Smith A, Kim S, Serago C, Hintenlang K, Hintenlang D, Heckman M (2015) Use of flattening filter free photon beams for off-axis targets in conformal arc stereotactic body radiation therapy. IFMBE Proc 51(4):448–451. https://doi.org/10.1007/978-3-319-19387-8_109

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank my employer ICON for the opportunity to be part of an exciting project where the benefits are seen in the hope of the patients. Lastly and most importantly, I would like to thank Emmanuel Baveas for his relentless, patient input that has led me to this final word.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by OK, and PD. The first draft of the manuscript was written by OK, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Onno Kamst.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This research was conducted without the need for 321.2227 human or animal involvement and consequently did not require ethics approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamst, O., Desai, P. Evaluation of HyperArc™ using film and portal dosimetry quality assurance. Phys Eng Sci Med 46, 57–66 (2023). https://doi.org/10.1007/s13246-022-01197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01197-1

Keywords

Navigation