Skip to main content
Log in

Transit dosimetry of stereotactic body radiotherapy treatments with electronic portal dosimetry device in patient with spinal implant

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In recent years, the use of the Electronic Portal Imaging Device (EPID) as an in vivo dosimeter has become widespread. However, reports of EPID for stereotactic body radiotherapy (SBRT) applications is scarce. There is no data on this topic especially when there are high-density materials in the radiation field. In this study, we aimed to investigate the dose distributions of SBRT treatment plans in patients with spinal implants by transit EPID dosimetry. Implants were inserted in phantoms that mimic the vertebrae, and VMAT plans were created on the phantoms to deliver 16 Gy radiation doses to the target in 1 fraction. Transit EPID measurements were performed for each irradiation. The results were compared with the treatment planning system using the gamma analysis method. According to the gamma analysis results, while the non-implant model met the acceptance criteria with a rate of 95.4%, the implanted models did not pass the test with results between the rates of 70% to 73%. In addition, while the dose difference in the isocenter was 1.3% for the non-implanted model, this difference was observed to be between 7 and 8% in the implanted models. Our study revealed that EPID can be used as transit dosimetry for the VMAT-SBRT applications. However, unacceptable dose differences were obtained by transit EPID dosimetry in the VMAT-SBRT applications of patients with an implant. In the treatment of such patients, alternative treatment methods should be preferred in which the interaction of the implants with radiation can be prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mundy GR (1997) Mechanisms of bone metastasis. Cancer 80(S8):1546–1556

    Article  CAS  Google Scholar 

  2. Lutz S, Berk L, Chang E, Chow E, Hahn C, Hoskin P et al (2011) Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys 79(4):965–976

    Article  Google Scholar 

  3. Gouveia AG, Chan DC, Hoskin PJ, Marta GN, Trippa F, Maranzano E et al (2021) Advances in radiotherapy in bone metastases in the context of new target therapies and ablative alternatives: a critical review. Radiother Oncol 163:55

    Article  CAS  Google Scholar 

  4. Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ et al (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366(9486):643–648

    Article  Google Scholar 

  5. Falicov A, Fisher CG, Sparkes J, Boyd MC, Wing PC, Dvorak MF (2006) Impact of surgical intervention on quality of life in patients with spinal metastases. Spine(Phila, PA 1976) 31(24):2849–2856

    Article  Google Scholar 

  6. Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S (2012) Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol 24(2):112–124

    Article  CAS  Google Scholar 

  7. Cheng ZJ, Bromley RM, Oborn B, Carolan M, Booth JT (2016) On the accuracy of dose prediction near metal fixation devices for spine SBRT. J Appl Clin Med Phys 17(3):475–485

    Article  Google Scholar 

  8. Trager M, Landers A, Yu Y, Shi W, Liu H (2020) Evaluation of elements spine SRS plan quality for SRS and SBRT treatment of spine metastases. Front Oncol 10:346

    Article  Google Scholar 

  9. Lye J, Dunn L, Kenny J, Lehmann J, Kron T, Oliver C et al (2014) Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters. Med Phys 41(3):032102

    Article  Google Scholar 

  10. Glennie GD (2003) A comparison of TLD dosimeters: LiF: Mg, Ti and LiF: Mg, Cu, P for measurement of radiation therapy doses. Med Phys 30(12):3262

    Article  CAS  Google Scholar 

  11. Devic S, Seuntjens J, Sham E, Podgorsak EB, Schmidtlein CR, Kirov AS et al (2005) Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys 32(7Part1):2245–2253

    Article  Google Scholar 

  12. Devic S, Tomic N, Aldelaijan S, DeBlois F, Seuntjens J, Chan MF et al (2012) Linearization of dose–response curve of the radiochromic film dosimetry system. Med Phys 39(8):4850–4857

    Article  CAS  Google Scholar 

  13. Wilcox EE, Daskalov GM (2007) Evaluation of GAFCHROMIC® EBT film for CyberKnife® dosimetry. Med Phys 34(6Part1):1967–1974

    Article  CAS  Google Scholar 

  14. Wendling M, McDermott LN, Mans A, Sonke J-J, van Herk M, Mijnheer BJ (2009) A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments. Med Phys 36(7):3310–3321

    Article  Google Scholar 

  15. Mans A, Remeijer P, Olaciregui-Ruiz I, Wendling M, Sonke JJ, Mijnheer B et al (2010) 3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry. Radiother Oncol 94(2):181–187

    Article  Google Scholar 

  16. Mijnheer B, Olaciregui-Ruiz I, Rozendaal R, Sonke J, Spreeuw H, Tielenburg R et al (2013) 3D EPID-based in vivo dosimetry for IMRT and VMAT. J Phys 444:012011

    Google Scholar 

  17. McCowan P, Van Uytven E, Van Beek T, Asuni G, McCurdy B (2015) An in vivo dose verification method for SBRT–VMAT delivery using the EPID. Med Phys 42(12):6955–6963

    Article  CAS  Google Scholar 

  18. Mans A, Wendling M, McDermott L, Sonke JJ, Tielenburg R, Vijlbrief R et al (2010) Catching errors with in vivo EPID dosimetry. Med Phys 37(62):2638–2644

    Article  CAS  Google Scholar 

  19. Van Elmpt W, McDermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B (2008) A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 88(3):289–309

    Article  Google Scholar 

  20. Olaciregui-Ruiz I, Rozendaal R, Mijnheer B, Mans A (2019) Site-specific alert criteria to detect patient-related errors with 3D EPID transit dosimetry. Med Phys 46(1):45–55

    Article  Google Scholar 

  21. Olaciregui-Ruiz I, Rozendaal R, van Kranen S, Mijnheer B, Mans A (2020) The effect of the choice of patient model on the performance of in vivo 3D EPID dosimetry to detect variations in patient position and anatomy. Med Phys 47(1):171–180

    Article  CAS  Google Scholar 

  22. Wendling M, McDermott LN, Mans A, Olaciregui-Ruiz Í, Pecharromán-Gallego R, Sonke JJ et al (2012) In aqua vivo EPID dosimetry. Med Phys 39(1):367–377

    Article  Google Scholar 

  23. McCurdy BM, McCowan PM (2017) In vivo dosimetry for lung radiotherapy including SBRT. Physica Med 44:123–130

    Article  Google Scholar 

  24. Moustakis C, Tazehmahalleh FE, Elsayad K, Fezeu F, Scobioala S (2020) A novel approach to SBRT patient quality assurance using EPID-based real-time transit dosimetry. Strahlenther Onkol 196(2):182–192

    Article  Google Scholar 

  25. Esposito M, Ghirelli A, Pini S, Alpi P, Barca R, Fondelli S et al (2021) Clinical implementation of 3D in vivo dosimetry for abdominal and pelvic stereotactic treatments. Radiother Oncol 154:14–20

    Article  CAS  Google Scholar 

  26. Murazaki H, Fukunaga J, Hirose TA, Funatsu N, Matsumoto R, Hidaka K et al (2019) Dosimetric assessment of a single-energy metal artifact reduction algorithm for computed tomography images in radiation therapy. Radiol Phys Technol 12(3):268–276

    Article  Google Scholar 

  27. Bär E, Schwahofer A, Kuchenbecker S, Häring P (2015) Improving radiotherapy planning in patients with metallic implants using the iterative metal artifact reduction (iMAR) algorithm. Biomed Phys Eng Express 1(2):025206

    Article  Google Scholar 

  28. Wieslander E, Knöös T (2003) Dose perturbation in the presence of metallic implants: treatment planning system versus Monte Carlo simulations. Phys Med Biol 48(20):3295

    Article  Google Scholar 

  29. Yedekci Y, Biltekin F, Ozyigit G (2019) Feasibility study of an electronic portal imaging based in vivo dose verification system for prostate stereotactic body radiotherapy. Physica Med 64:204–209

    Article  Google Scholar 

  30. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A et al (2018) Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys 45(4):e53–e83

    Article  Google Scholar 

  31. Yazici G, Sari SY, Yedekci FY, Yucekul A, Birgi SD, Demirkiran G et al (2016) The dosimetric impact of implants on the spinal cord dose during stereotactic body radiotherapy. Radiat Oncol 11(1):1–9

    Article  Google Scholar 

Download references

Funding

This study was supported by Hacettepe University Scientific Research Projects Coordination Unit. Project Number: THD-2021-19356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yagiz Yedekci.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yedekci, Y., Elmalı, A., Demirkiran, G. et al. Transit dosimetry of stereotactic body radiotherapy treatments with electronic portal dosimetry device in patient with spinal implant. Phys Eng Sci Med 45, 1103–1109 (2022). https://doi.org/10.1007/s13246-022-01177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01177-5

Keywords

Navigation