Skip to main content

Advertisement

Log in

A strategy of model space search for dynamic causal modeling in task fMRI data exploratory analysis

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Dynamic causal modeling (DCM) is a tool used for effective connectivity (EC) estimation in neuroimage analysis. But it is a model-driven analysis method, and the structure of the EC network needs to be determined in advance based on a large amount of prior knowledge. This characteristic makes it difficult to apply DCM to the exploratory brain network analysis. The exploratory analysis of DCM can be realized from two perspectives: one is to reduce the computational cost of the model; the other is to reduce the model space. From the perspective of model space reduction, a model space exploration strategy is proposed, including two algorithms. One algorithm, named GreedyEC, starts with reducing EC from full model, and the other, named GreedyROI, start with adding EC from one node model. Then the two algorithms were applied to the task state functional magnetic resonance imaging (fMRI) data of visual object recognition and selected the best DCM model from the perspective of model comparison based on Bayesian model compare method. Results show that combining the results of the two algorithms can further improve the effect of DCM exploratory analysis. For convenience in application, the algorithms were encapsulated into MATLAB function based on SPM to help neuroscience researchers to analyze the brain causal information flow network. The strategy provides a model space exploration tool that may obtain the best model from the perspective of model comparison and lower the threshold of DCM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in OpenNeuro at https://openneuro.org/datasets/ds000105, reference number ds000105.

Abbreviations

DCM:

Dynamic causal modeling

FC:

Functional connectivity

EC:

Effective connectivity

GCA:

Granger causality analysis

rDCM:

Regression dynamic causal modeling

srDCM:

Sparse regression DCM

SNR:

Signal-to-noise ratio

TR:

Repetition time

GES:

Greedy Equivalence Search

GHD:

Greedy Hamming-Distance Search

GA:

Genetic Algorithm

BMA:

Bayesian model average

ROI:

Region of interest

BMS:

Bayesian model selection

EPI:

Echo planar imaging

SPGR:

Spoiled gradient recall

MNI:

Montreal Neurological Institute

V1:

Primary visual cortex area

FG:

Fusiform gyrus

IPS:

Intraparietal sulcus

IT:

Inferior temporal lobe

AAL:

Anatomical automatic labeling

GBF:

Group Bayes Factor

BPA:

Bayesian parameters average

References

  1. Luppi AI, Carhart-Harris RL, Roseman L, Pappas I, Menon DK, Stamatakis EA (2021) LSD alters dynamic integration and segregation in the human brain. Neuroimage. https://doi.org/10.1016/j.neuroimage.2020.117653

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shine JM (2019) Neuromodulatory influences on integration and segregation in the brain. Trends Cogn Sci 23:572–583. https://doi.org/10.1016/j.tics.2019.04.002

    Article  PubMed  Google Scholar 

  3. Shine JM, Aburn MJ, Breakspear M, Poldrack RA (2018) The modulation of neural gain facilitates a transition between functional segregation and integration in the brain. Elife. https://doi.org/10.7554/eLife.31130

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang R, Liu MX, Cheng XH, Wu Y, Hildebrandt A, Zhou CS (2021) Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2022288118

    Article  PubMed  PubMed Central  Google Scholar 

  5. Deco G, Tononi G, Boly M, Kringelbach ML (2015) Rethinking segregation and integration: contributions of whole-brain modelling. Nat Rev Neurosci 16:430-U81. https://doi.org/10.1038/nrn3963

    Article  CAS  PubMed  Google Scholar 

  6. Kundu P et al (2018) The integration of functional brain activity from adolescence to adulthood. J Neurosci 38:3559–3570. https://doi.org/10.1523/jneurosci.1864-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iraji A et al (2019) The spatial chronnectome reveals a dynamic interplay between functional segregation and integration. Hum Brain Mapp 40:3058–3077. https://doi.org/10.1002/hbm.24580

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frassle S, Yao Y, Schobi D, Aponte EA, Heinzle J, Stephan KE (2018) Generative models for clinical applications in computational psychiatry. Wiley Interdiscip Rev. https://doi.org/10.1002/wcs.1460

    Article  Google Scholar 

  9. Wang DJ, Liang SL (2021) Dynamic causal modeling on the identification of interacting networks in the brain: a systematic review. IEEE Trans Neural Syst Rehabil Eng 29:2299–2311. https://doi.org/10.1109/tnsre.2021.3123964

    Article  PubMed  Google Scholar 

  10. Chu YF, Wang XW, Ma JX, Jia KY, Zhou JR, Yang HX (2020) Inductive Granger causal modeling for multivartate time series. In 20th IEEE International Conference on Data Mining (ICDM), Electr Network, Nov 17–20 2020, pp 972–977. https://doi.org/10.1109/icdm50108.2020.00111

  11. Skripnikov A, Michailidis G (2019) Joint estimation of multiple network Granger causal models. Econom Stat 10:120–133. https://doi.org/10.1016/j.ecosta.2018.08.001

    Article  Google Scholar 

  12. Zhu JY, Sun CX, Li VOK (2017) An extended spatio-temporal granger causality model for air quality estimation with heterogeneous urban big data. IEEE Trans Big Data 3:307–319. https://doi.org/10.1109/tbdata.2017.2651898

    Article  Google Scholar 

  13. Deshpande G, LaConte S, James GA, Peltier S, Hu X (2009) Multivariate Granger causality analysis of fMRI data. Hum Brain Mapp 30:1361–73. https://doi.org/10.1002/hbm.20606

    Article  PubMed  Google Scholar 

  14. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–302. https://doi.org/10.1016/s1053-8119(03)00202-7

    Article  CAS  PubMed  Google Scholar 

  15. Almgren H, de Steen FV, Kuhn S, Razi A, Friston K, Marinazzo D (2018) Variability and reliability of effective connectivity within the core default mode network: a multi-site longitudinal spectral DCM study. Neuroimage 183:757–768. https://doi.org/10.1016/j.neuroimage.2018.08.053

    Article  PubMed  Google Scholar 

  16. Bajaj S, Killgore WDS (2021) Association between emotional intelligence and effective brain connectome: a large-scale spectral DCM study. Neuroimage. https://doi.org/10.1016/j.neuroimage.2021.117750

    Article  PubMed  Google Scholar 

  17. Friston KJ, Kahan J, Biswal B, Razi A (2014) A DCM for resting state fMRI. Neuroimage 94:396–407. https://doi.org/10.1016/j.neuroimage.2013.12.009

    Article  PubMed  Google Scholar 

  18. Razi A et al (2017) Large-scale DCMs for resting-state fMRI. Netw Neurosci 1:222–241. https://doi.org/10.1162/netn_a_00015

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nie YL et al (2020) Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics. Stat Appl Genet Mol Biol. https://doi.org/10.1515/sagmb-2019-0058

    Article  PubMed  Google Scholar 

  20. Aponte EA, Raman S, Sengupta B, Penny WD, Stephan KE, Heinzle J (2016) mpdcm: a toolbox for massively parallel dynamic causal modeling. J Neurosci Methods 257:7–16. https://doi.org/10.1016/j.jneumeth.2015.09.009

    Article  PubMed  Google Scholar 

  21. Prando G, Zorzi M, Bertoldo A, Corbetta M, Zorzi M, Chiuso A (2020) Sparse DCM for whole-brain effective connectivity from resting-state fMRI data. Neuroimage. https://doi.org/10.1016/j.neuroimage.2019.116367

    Article  PubMed  Google Scholar 

  22. Aranyi SC, Nagy M, Opposits G, Berenyi E, Emri M (2021) Characterizing network search algorithms developed for dynamic causal modeling. Front Neuroinform 15:656486. https://doi.org/10.3389/fninf.2021.656486

    Article  PubMed  PubMed Central  Google Scholar 

  23. Friston KJ, Penny W (2011) Post hoc Bayesian model selection. Neuroimage 56:2089–99. https://doi.org/10.1016/j.neuroimage.2011.03.062

    Article  PubMed  Google Scholar 

  24. Rosa MJ, Friston KJ, Penny W (2012) Post-hoc selection of dynamic causal models. J Neurosci Methods 208:66–78. https://doi.org/10.1016/j.jneumeth.2012.04.013

    Article  CAS  PubMed  Google Scholar 

  25. Friston KJ et al (2016) Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage 128:413–431. https://doi.org/10.1016/j.neuroimage.2015.11.015

    Article  PubMed  Google Scholar 

  26. Frassle S, Lomakina EI, Razi A, Friston KJ, Buhmann JM, Stephan KE (2017) Regression DCM for fMRI. Neuroimage 155:406–421. https://doi.org/10.1016/j.neuroimage.2017.02.090

    Article  PubMed  Google Scholar 

  27. Frassle S et al (2018) A generative model of whole-brain effective connectivity. Neuroimage 179:505–529. https://doi.org/10.1016/j.neuroimage.2018.05.058

    Article  PubMed  Google Scholar 

  28. Frassle S et al (2021) Regression dynamic causal modeling for resting-state fMRI. Hum Brain Mapp 42:2159–2180. https://doi.org/10.1002/hbm.25357

    Article  PubMed  PubMed Central  Google Scholar 

  29. Seghier ML, Friston KJ (2013) Network discovery with large DCMs. Neuroimage 68:181–191. https://doi.org/10.1016/j.neuroimage.2012.12.005

    Article  PubMed  Google Scholar 

  30. Zeidman P et al (2019) A guide to group effective connectivity analysis, part 1: first level analysis with DCM for fMRI. Neuroimage 200:174–190. https://doi.org/10.1016/j.neuroimage.2019.06.031

    Article  PubMed  Google Scholar 

  31. Zeidman P et al (2019) A guide to group effective connectivity analysis, part 2: second level analysis with PEB. Neuroimage 200:12–25. https://doi.org/10.1016/j.neuroimage.2019.06.032

    Article  PubMed  Google Scholar 

  32. Bernal-Casas D et al (2013) Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by stochastic DCM. Neuroimage 82:555–563. https://doi.org/10.1016/j.neuroimage.2013.05.120

    Article  CAS  PubMed  Google Scholar 

  33. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. Neuroimage 46:1004–1017. https://doi.org/10.1016/j.neuroimage.2009.03.025

    Article  PubMed  Google Scholar 

  34. Litvak V et al (2019) There's no such thing as a 'true' model: the challenge of assessing face validity. In: IEEE international conference on systems, man and cybernetics (SMC), Bari, ITALY, Oct 06–09 2019. pp 4403–4408

  35. Hanson SJ, Matsuka T, Haxby JV (2004) Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? Neuroimage 23:156–66. https://doi.org/10.1016/j.neuroimage.2004.05.020

    Article  PubMed  Google Scholar 

  36. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–30. https://doi.org/10.1126/science.1063736

    Article  CAS  PubMed  Google Scholar 

  37. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2018) Visual object recognition. OpenNeuro. https://openneuro.org/datasets/ds000105/ accessed 28 Mar 2020

  38. O’Toole AJ, Jiang F, Abdi H, Haxby JV (2005) Partially distributed representations of objects and faces in ventral temporal cortex. J Cogn Neurosci 17:580–90. https://doi.org/10.1162/0898929053467550

    Article  PubMed  Google Scholar 

  39. Amso D, Scerif G (2015) The attentive brain: insights from developmental cognitive neuroscience. Nat Rev Neurosci 16:606–619. https://doi.org/10.1038/nrn4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Julian JB, Ryan J, Epstein RA (2017) Coding of object size and object category in human visual cortex. Cereb Cortex 27:3095–3109. https://doi.org/10.1093/cercor/bhw150

    Article  PubMed  Google Scholar 

  41. Peelen MV, Downing PE (2017) Category selectivity in human visual cortex: beyond visual object recognition. Neuropsychologia 105:177–183. https://doi.org/10.1016/j.neuropsychologia.2017.03.033

    Article  PubMed  Google Scholar 

  42. Silson EH, Groen IIA, Baker CI (2021) Direct comparison of contralateral bias and face/scene selectivity in human occipitotemporal cortex. Brain Struct Funct. https://doi.org/10.1007/s00429-021-02411-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. van den Hurk J, Van Baelen M, de Beeck HPO (2017) Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci 114:E4501–E4510

    Article  Google Scholar 

  44. Volfart A et al (2022) Intracerebral electrical stimulation of the right anterior fusiform gyrus impairs human face identity recognition. Neuroimage. https://doi.org/10.1016/j.neuroimage.2022.118932

    Article  PubMed  Google Scholar 

  45. Vossel S, Geng JJ, Fink GR (2014) Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 20:150–9. https://doi.org/10.1177/1073858413494269

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eickhoff SB, Rottschy C, Zilles K (2007) Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex. Brain Struct Funct 212:255–67. https://doi.org/10.1007/s00429-007-0156-y

    Article  CAS  PubMed  Google Scholar 

  47. Rottschy C et al (2013) Differentiated parietal connectivity of frontal regions for “what” and “where” memory. Brain Struct Funct 218:1551–67. https://doi.org/10.1007/s00429-012-0476-4

    Article  CAS  PubMed  Google Scholar 

  48. Weber EMG, Hahn T, Hilger K, Fiebach CJ (2017) Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory. Neuroimage 146:404–418. https://doi.org/10.1016/j.neuroimage.2016.10.006

    Article  Google Scholar 

  49. Hwang K, Shine JM, Cellier D, D’Esposito M (2020) The human intraparietal sulcus modulates task-evoked functional connectivity. Cereb Cortex 30:875–887. https://doi.org/10.1093/cercor/bhz133

    Article  PubMed  Google Scholar 

  50. Conway BR (2018) The organization and operation of inferior temporal cortex. Annu Rev Vis Sci 4:381–402

    Article  Google Scholar 

  51. Genc E, Schoelvinck ML, Bergmann J, Singer W, Kohler A (2016) Functional connectivity patterns of visual cortex reflect its anatomical organization. Cereb Cortex 26:3719–3731. https://doi.org/10.1093/cercor/bhv175

    Article  PubMed  Google Scholar 

  52. Sim E-J, Helbig HB, Graf M, Kiefer M (2015) When action observation facilitates visual perception: activation in visuo-motor areas contributes to object recognition. Cereb Cortex 25:2907–2918. https://doi.org/10.1093/cercor/bhu087

    Article  PubMed  Google Scholar 

  53. Wang X, Zhen Z, Song Y, Huang L, Kong X, Liu J (2016) The hierarchical structure of the face network revealed by its functional connectivity pattern. J Neurosci 36:890–900. https://doi.org/10.1523/jneurosci.2789-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang W et al (2016) Functional organization of the fusiform gyrus revealed with connectivity profiles. Hum Brain Mapp 37:3003–16. https://doi.org/10.1002/hbm.23222

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hutchison RM, Gallivan JP (2018) Functional coupling between frontoparietal and occipitotemporal pathways during action and perception. Cortex 98:8–27. https://doi.org/10.1016/j.cortex.2016.10.020

    Article  PubMed  Google Scholar 

  56. Cengiz E, Kelek MM, Oguz Y, Yilmaz C (2022) Classification of breast cancer with deep learning from noisy images using wavelet transform. Biomed Eng 67:143–150. https://doi.org/10.1515/bmt-2021-0163

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Haxby JV for providing public datasets.

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2018AAA0102100), the Natural Science Foundation of Hunan Province of China (Grant Nos. 2019JJ40387 and 2020JJ4120), the National Natural Science Foundation of China (Grant Nos. 61972419 and 61672542), the Hunan Philosophy and Social Science Foundation Project (Grant No. 20JD039), and also supported by the Fundamental Reasearch Funds for the Central Universities of Central South University (Hosted by Yilin Ou).

Author information

Authors and Affiliations

Authors

Contributions

Project design: YO and PD. Project conception: PD, ZC and BZ. Conducting of experiments: YO, PD, XZ, TX and YL. Analysis of data: YO and PD. Interpretation of data: YO, PD, XZ, TX and YL. Manuscript writing: YO, PD and XZ. Manuscript editing: YO, PD and ZC. Manuscript review: PD and BZ.

Corresponding author

Correspondence to Peishan Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The images are being reused from prior publications.

Consent to participate

The images are being reused from prior publications.

Consent to publish

The images are being reused from prior publications.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Dai, P., Zhou, X. et al. A strategy of model space search for dynamic causal modeling in task fMRI data exploratory analysis. Phys Eng Sci Med 45, 867–882 (2022). https://doi.org/10.1007/s13246-022-01156-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01156-w

Keywords

Navigation