Skip to main content

Advertisement

Log in

Effect of foam insertion in aneurysm sac on flow structures in parent lumen: relating vortex structures with disturbed shear

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Numerous studies suggest that disturbed shear, causing endothelium dysfunction, can be related to neighboring vortex structures. With this motivation, this study presents a methodology to characterize the vortex structures. Precisely, we use mapping and characterization of vortex structures' changes to relate it with the hemodynamic indicators of disturbed shear. Topological features of vortex core lines (VCLs) are used to quantify the changes in vortex structures. We use the Sujudi-Haimes algorithm to extract the VCLs from the flow simulation results. The idea of relating vortex structures with disturbed shear is demonstrated for cerebral arteries with aneurysms virtually treated by inserting foam in the sac. To get physiologically realistic flow fields, we simulate blood flow in two patient-specific geometries before and after foam insertion, with realistic velocity waveform imposed at the inlet, using the Carreau-Yasuda model to mimic the shear-thinning behavior. With homogenous porous medium assumption, flow through the foam is modeled using the Forchheimer-Brinkman extended Darcy model. Results show that foam insertion increases the number of VCLs in the parent lumen. The average length of VCL increases by 168.9% and 55.6% in both geometries. For both geometries under consideration, results demonstrate that the region with increased disturbed shear lies in the same arterial segment exhibiting an increase in the number of oblique VCLs. Based on the findings, we conjecture that an increase in oblique VCLs is related to increased disturbed shear at the neighboring portion of the arterial wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

WSS:

Wall shear stress

VCL:

Vortex core line

TAWSS:

Time-averaged wall shear stress

ΔTAWSS:

Change in time-averaged wall shear stress

TASWSS:

Time-averaged secondary wall shear stress

ΔTASWSS:

Change in time-averaged secondary wall shear stress

OSI:

Oscillating shear index

ΔOSI:

Change in oscillating shear index

SMP:

Shape memory polymer

UPL:

Upstream parent lumen

SBPL:

Sac base parent lumen

DPL:

Downstream parent lumen

EC:

Endothelial cell

PLC:

Parent lumen centerline

PC:

Principal cord

References

  1. Sforza DM, Putman CM, Cebral JR (2009) Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech 41:91–107. https://doi.org/10.1146/annurev.fluid.40.111406.102126

    Article  PubMed  PubMed Central  Google Scholar 

  2. Le TB, Borazjani I, Sotiropoulos F (2010) Pulsatile flow effects on the hemodynamics of intracranial aneurysms. J Biomech Eng 132:111009. https://doi.org/10.1115/1.4002702

    Article  PubMed  Google Scholar 

  3. Goubergrits L, Schaller J, Kertzscher U, Woelken T, Ringelstein M, Spuler A (2014) Hemodynamic impact of cerebral aneurysm endovascular treatment devices: Coils and flow diverters. Expert Rev Med Devices 11:361–373. https://doi.org/10.1586/17434440.2014.925395

    Article  CAS  PubMed  Google Scholar 

  4. Muschenborn AD, Ortega JM, Szafron JM, Szafron DJ, Maitland DJ (2013) Porous media properties of reticulated shape memory polymer foams and mock embolic coils for aneurysm treatment. Biomed Eng Online 12:103. https://doi.org/10.1186/1475-925X-12-103

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jing L, Zhong J, Liu J, Yang X, Nikhil P, Meng H, Wang S, Zhang Y (2016) Hemodynamic effect of flow diverter and coils in treatment of large and giant intracranial aneurysms. World Neurosurg 89:199–207. https://doi.org/10.1016/j.wneu.2016.01.079

    Article  PubMed  Google Scholar 

  6. Seibert B, Tummala RP, Chow R, Faridar A, Mousavi SA, Divani AA (2011) Intracranial aneurysms: review of current treatment options and outcomes. Front Neurol 2:1–11. https://doi.org/10.3389/fneur.2011.00045

    Article  Google Scholar 

  7. Rodriguez JN, Clubb FJ, Wilson TS, Miller MW, Fossum TW, Hartman J, Tuzun E, Singhal P, Maitland DJ (2014) In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model. J Biomed Mater Res - Part A 102:1231–1242. https://doi.org/10.1002/jbm.a.34782

    Article  CAS  Google Scholar 

  8. Horn J, Hwang W, Jessen SL, Keller BK, Miller MW, Tuzun E, Hartman J, Clubb FJ, Maitland DJ (2017) Comparison of shape memory polymer foam versus bare metal coil treatments in an in vivo porcine sidewall aneurysm model. J Biomed Mater Res 105:1892–1905. https://doi.org/10.1002/jbm.b.33725

    Article  CAS  Google Scholar 

  9. Wang J, Kunkel R, Luo J, Li Y, Liu H, Bohnstedt BN, Liu Y, Lee CH (2019) Shape memory polyurethane with porous architectures for potential applications in intracranial aneurysm treatment. Polymers (Basel) 11:1–14. https://doi.org/10.3390/polym11040631

    Article  CAS  Google Scholar 

  10. Delaey J, Dubruel P, Van Vlierberghe S (2020) Shape-memory polymers for biomedical applications. Adv Funct Mater 30:1–23. https://doi.org/10.1002/adfm.201909047

    Article  CAS  Google Scholar 

  11. Maitland DJ, Small W, Ortega JM, Buckley PR, Rodriguez J, Hartman J, Wilson TS (2007) Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms. J Biomed Opt 12:030504. https://doi.org/10.1117/1.2743983

    Article  PubMed  Google Scholar 

  12. Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379. https://doi.org/10.1586/erd.10.8

    Article  CAS  PubMed  Google Scholar 

  13. Ortega JM, Hartman J, Rodriguez JN, Maitland DJ (2013) Virtual treatment of basilar aneurysms using shape memory polymer foam. Ann Biomed Eng 41:725–743. https://doi.org/10.1007/s10439-012-0719-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pandey PK, Paul C, Das MK, Muralidhar K (2021) Assessment and visualization of hemodynamic loading in aneurysm sac and neck : effect of foam insertion. Proc Inst Mech Eng 235:1–13. https://doi.org/10.1177/09544119211015569

    Article  Google Scholar 

  15. Broderick J (2009) Clipping or coiling: the first step for ruptured aneurysms. Lancet Neurol 8:414–415. https://doi.org/10.1016/S1474-4422(09)70086-9

    Article  PubMed  Google Scholar 

  16. Cebral JR, Sheridan M, Putman CM (2010) Hemodynamics and bleb formation in intracranial aneurysms. Am J Neuroradiol 31:304–310. https://doi.org/10.3174/ajnr.A1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387. https://doi.org/10.1152/physrev.00047.2009

    Article  PubMed  Google Scholar 

  18. Zhou G, Zhu Y, Yin Y, Su M, Li M (2017) Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-05886-w

    Article  CAS  Google Scholar 

  19. Le TB, Troolin DR, Amatya D, Longmire EK, Sotiropoulos F (2013) Vortex phenomena in sidewall aneurysm hemodynamics: Experiment and numerical simulation. Ann Biomed Eng 41:2157–2170. https://doi.org/10.1007/s10439-013-0811-9

    Article  PubMed  Google Scholar 

  20. Zhang Y, Yang X, Wang Y, Liu J, Li C, Jing L, Wang S, Li H (2014) Influence of morphology and hemodynamic factors on rupture of multiple intracranial aneurysms: matched-pairs of ruptured-unruptured aneurysms located unilaterally on the anterior circulation. BMC Neurol 14:1–8. https://doi.org/10.1186/s12883-014-0253-5

    Article  Google Scholar 

  21. Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D (2008) Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002. https://doi.org/10.1161/STROKEAHA.108.521617

    Article  PubMed  PubMed Central  Google Scholar 

  22. Park W, Song Y, Park KJ, Koo H-W, Yang K, Suh DC (2016) Hemodynamic characteristics regarding recanalization of completely coiled aneurysms: computational fluid dynamic analysis using virtual models comparison. Neurointervention 11:30. https://doi.org/10.5469/neuroint.2016.11.1.30

    Article  PubMed  PubMed Central  Google Scholar 

  23. Irie K, Kojima M, Negoro M, Ohta M, Anzai H, Hirose Y, Honjo N (2012) Computational fluid dynamic analysis following recurrence of cerebral aneurysm after coil embolization. Asian J Neurosurg 7:109. https://doi.org/10.4103/1793-5482.103706

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luo B, Yang X, Wang S, Li H, Chen J, Yu H, Zhang YY, Zhang YY, Mu S, Liu Z, Ding G (2011) High shear stress and flow velocity in partially occluded aneurysms prone to recanalization. Stroke 42:745–753. https://doi.org/10.1161/STROKEAHA.110.593517

    Article  PubMed  Google Scholar 

  25. Geers AJ, Morales HG, Larrabide I, Butakoff C, Bijlenga P, Frangi AF (2017) Wall shear stress at the initiation site of cerebral aneurysms. Biomech Model Mechanobiol 16:97–115. https://doi.org/10.1007/s10237-016-0804-3

    Article  CAS  PubMed  Google Scholar 

  26. Macek Jilkova Z, Deplano V, Verdier C, Toungara M, Geindreau C, Duperray A (2013) Wall shear stress and endothelial cells dysfunction in the context of abdominal aortic aneurysms. Comput Methods Biomech Biomed Engin 16:27–29. https://doi.org/10.1080/10255842.2013.815959

    Article  PubMed  Google Scholar 

  27. Saqr KM, Rashad S, Tupin S, Niizuma K, Hassan T, Tominaga T, Ohta M (2019) What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X19854640

    Article  PubMed  PubMed Central  Google Scholar 

  28. Davies PF (1995) Flow-mediated mechanotransduction. Physiol Rev 75:519–560

    Article  CAS  Google Scholar 

  29. DePaola N, Gimbrone MA, Davies PF, Dewey CF (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb 12:1254–1257. https://doi.org/10.1161/01.atv.12.11.1254

    Article  CAS  PubMed  Google Scholar 

  30. Meng H, Tutino VM, Xiang J, Siddiqui A (2014) High WSS or Low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. Am J Neuroradiol 35:1254–1262. https://doi.org/10.3174/ajnr.A3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arzani A, Shadden SC (2016) Characterizations and correlations of wall shear stress in aneurysmal flow. J Biomech Eng Doi. https://doi.org/10.1115/1.4032056

    Article  Google Scholar 

  32. Helmlinger G, Geiger RV, Schreck S, Nerem RM (1991) Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng 113:123–131. https://doi.org/10.1115/1.2891226

    Article  CAS  PubMed  Google Scholar 

  33. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431. https://doi.org/10.1038/nature03952

    Article  CAS  PubMed  Google Scholar 

  34. Varble N, Trylesinski G, Xiang J, Snyder K, Meng H (2017) Identification of vortex structures in a cohort of 204 intracranial aneurysms. J R Soc Interface 14:2017. https://doi.org/10.1098/rsif.2017.0021

    Article  Google Scholar 

  35. Feliciani G, Potters WV, Van Ooij P, Schneiders JJ, Nederveen AJ, Van Bavel E, Majoie CB, Marquering HA (2015) Multiscale 3-D + t intracranial aneurysmal flow vortex detection. IEEE Trans Biomed Eng 62:1355–1362. https://doi.org/10.1109/TBME.2014.2387874

    Article  PubMed  Google Scholar 

  36. Gambaruto AM, João AJ (2012) Flow structures in cerebral aneurysms. Comput Fluids 65:56–65. https://doi.org/10.1016/j.compfluid.2012.02.020

    Article  Google Scholar 

  37. Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214. https://doi.org/10.1017/S0022112005004726

    Article  Google Scholar 

  38. Biasetti J, Hussain F, Gasser TC (2011) Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation. J R Soc Interface 8:1449–1461. https://doi.org/10.1098/rsif.2011.0041

    Article  PubMed  PubMed Central  Google Scholar 

  39. Doorly DJ, Sherwin SJ, Franke PT, Peiró J (2002) Vortical flow structure identification and flow transport in arteries. Comput Methods Biomech Biomed Engin 5:261–273. https://doi.org/10.1080/10255840290010715

    Article  CAS  PubMed  Google Scholar 

  40. Oeltze-Jafra S, Cebral JR, Janiga G, Preim B (2016) Cluster analysis of vortical flow in simulations of cerebral aneurysm hemodynamics. IEEE Trans Vis Comput Graph 22:757–766. https://doi.org/10.1109/TVCG.2015.2467203

    Article  PubMed  Google Scholar 

  41. Byrne G, Cebral J (2013) Vortex dynamics in cerebral aneurysms. ArXiv: 1309.7875v1. 1–7. http://arxiv.org/abs/1309.7875

  42. Von Spiczak J, Crelier G, Giese D, Kozerke S, Maintz D, Bunck AC (2015) Quantitative analysis of vortical blood flow in the thoracic aorta using 4D phase contrast MRI. PLoS ONE. https://doi.org/10.1371/journal.pone.0139025

    Article  Google Scholar 

  43. Das MK, Paul C (2018) Porous media applications: biological systems. In: Das MK, Mukherjee PP, Muralidhar K (eds), Modeling transport phenomena in porous media with applications mechanical engineering series. Springer International Publishing Cham, pp 123–154. https://doi.org/10.1007/978-3-319-69866-3_5

  44. Kaviany M (1991) Principles of Heat Transfer in Porous Media Introduction Springer. US New York, NY

    Book  Google Scholar 

  45. Khaled A-RA, Vafai K (2003) The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf 46:4989–5003. https://doi.org/10.1016/S0017-9310(03)00301-6

    Article  Google Scholar 

  46. Tosco T, Marchisio DL, Lince F, Sethi R (2013) Extension of the darcy-forchheimer law for shear-thinning fluids and validation via pore-scale flow simulations. Transp Porous Media 96:1–20. https://doi.org/10.1007/s11242-012-0070-5

    Article  CAS  Google Scholar 

  47. Jithin M, Kumar N, De A, Das MK (2018) Pore-scale simulation of shear thinning fluid flow using lattice boltzmann method. Transp Porous Media 121:753–782. https://doi.org/10.1007/s11242-017-0984-z

    Article  CAS  Google Scholar 

  48. Kim YH, VandeVord PJ, Lee JS (2010) Multiphase non-Newtonian effects on pulsatile hemodynamics in a coronary artery. Int J Numer Meth Fl. https://doi.org/10.1002/fld

    Article  Google Scholar 

  49. Date AW (2005) Solution of transport equations on unstructured meshes with cell-centered colocated variables Part I: Discretization. Int J Heat Mass Transf 48:1128–1136. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.037

    Article  Google Scholar 

  50. Date AW (2003) Fluid dynamical view of pressure checkerboarding problem and smoothing pressure correction on meshes with colocated variables. Int J Heat Mass Transf 46:4885–4898. https://doi.org/10.1016/S0017-9310(03)00332-6

    Article  Google Scholar 

  51. Mitsos AP, Kakalis NMP, Ventikos YP, Byrne JV (2008) Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: Technical note. Neuroradiology 50:341–347. https://doi.org/10.1007/s00234-007-0334-x

    Article  PubMed  Google Scholar 

  52. Sujudi D, Haimes R (1995) Identification of swirling flow in 3-D vector fields. Comput Fluid Dyn Conf 1:792–799

    Google Scholar 

  53. Roth M (2000) Automatic extraction of vortex core lines and other line-type features for scientific visualization. Swiss Fed Inst Technol Zurich 9:1–216. ftp://ftp.inf.ethz.ch/pub/publications/diss/th13673.pdf

  54. Reinders F, Post FH, Spoelder HJW (2001) Visualization of time-dependent data with feature tracking and event detection. Vis Comput 17:55–71. https://doi.org/10.1007/PL00013399

    Article  Google Scholar 

  55. Longo M, Granata F, Racchiusa S, Mormina E, Grasso G, Longo GM, Garufi G, Salpietro FM, Alafaci C (2017) Role of hemodynamic forces in unruptured intracranial aneurysms: an overview of a complex scenario. World Neurosurg 105:632–642. https://doi.org/10.1016/j.wneu.2017.06.035

    Article  PubMed  Google Scholar 

  56. He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J Biomech Eng 118:74–82. https://doi.org/10.1115/1.2795948

    Article  CAS  PubMed  Google Scholar 

  57. Poelma C, Watton PN, Ventikos Y (2015) Transitional flow in aneurysms and the computation of haemodynamic parameters. J R Soc Interface. https://doi.org/10.1098/rsif.2014.1394

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gohil T, McGregor RHP, Szczerba D, Burckhardt K, Muralidhar K, Székely G (2011) Simulation of oscillatory flow in an aortic bifurcation using FVM and FEM: A comparative study of implementation strategies. Int J Numer Methods Fluids 66:1037–1067. https://doi.org/10.1002/fld.2301

    Article  Google Scholar 

  59. Timité B, Castelain C, Peerhossaini H (2010) Pulsatile viscous flow in a curved pipe: effects of pulsation on the development of secondary flow. Int J Heat Fluid Flow 31:879–896. https://doi.org/10.1016/j.ijheatfluidflow.2010.04.004

    Article  Google Scholar 

  60. Pandey PK, Das MK (2019) Unsteady targeted particle delivery in three dimensional tortuous cerebral artery. Int J Adv Eng Sci Appl Math 11:263–279. https://doi.org/10.1007/s12572-020-00263-9

    Article  Google Scholar 

  61. Levy Y, Degani D, Seginer A (1990) Graphical visualization of vortical flows by means of helicity. AIAA J 28:1347–1352. https://doi.org/10.2514/3.25224

    Article  Google Scholar 

  62. Mallubhotla H, Belfort G, Edelstein WA, Early TA (2001) Dean vortex stability using magnetic resonance flow imaging and numerical analysis. AIChE J 47:1126–1140. https://doi.org/10.1002/aic.690470519

    Article  CAS  Google Scholar 

  63. Evegren P, Fuchs L, Revstedt J (2010) On the secondary flow through bifurcating pipes. Phys Fluids. https://doi.org/10.1063/1.3484266

    Article  Google Scholar 

  64. Bulusu KV, Plesniak MW (2013) Secondary flow morphologies due to model stent-induced perturbations in a 180 curved tube during systolic deceleration. Exp Fluids. https://doi.org/10.1007/s00348-013-1493-7

    Article  Google Scholar 

  65. Gallo D, Steinman DA, Bijari PB, Morbiducci U (2012) Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J Biomech 45:2398–2404. https://doi.org/10.1016/j.jbiomech.2012.07.007

    Article  PubMed  Google Scholar 

  66. Liu X, Sun A, Fan Y, Deng X (2014) Physiological significance of helical flow in the arterial system and its potential clinical applications. Ann Biomed Eng 43:3–15. https://doi.org/10.1007/s10439-014-1097-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The High-Performance Computing facility at the Indian Institute of Technology Kanpur, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Kumar Das.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P.K., Das, M.K. Effect of foam insertion in aneurysm sac on flow structures in parent lumen: relating vortex structures with disturbed shear. Phys Eng Sci Med 44, 1231–1248 (2021). https://doi.org/10.1007/s13246-021-01058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01058-3

Keywords

Navigation