Skip to main content

Advertisement

Log in

Development of single-channel electroencephalography signal analysis model for real-time drowsiness detection

SEEGDD

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Drowsiness detection is essential in some critical tasks such as vehicle driving, crane operating, mining blasting, and so on, which can help minimize the risks of inattentiveness. Electroencephalography (EEG) based drowsiness detection methods have been shown to be effective. However, due to the non-stationary nature of EEG signals, techniques such as signal transformation and sub-band extraction are increasingly being used to automatically classify awake and drowsy states. Most of these procedures require high computation time. In this paper, analytical and single-feature computation are used to propose a single-channel EEG-based drowsiness detection method to overcome this. Physionet sleep dataset and the simulated virtual driving dataset were used to test the proposed model. When compared to existing work, the proposed approach yields better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. www.eyetracking-glasses.com

References

  1. Stradling J, Crosby J, Payne C (1991) Self reported snoring and daytime sleepiness in men aged 35–65 years. Thorax 46(11):807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sriraam N, Shri TP, Maheshwari U (2016) Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection. Austral Phys Eng Sci Med 39(3):797

    Article  CAS  Google Scholar 

  3. Kemp B (2005) Improving alertness through effective fatigue management. http://www.hse.gov.uk/research/rrhtm/rr318.htm

  4. Verster JC, Roth T (2011) Standard operation procedures for conducting the on-the-road driving test, and measurement of the standard deviation of lateral position (SDLP). Int J General Med 4:359

    Article  Google Scholar 

  5. Miley AÅ, Kecklund G, Åkerstedt T (2016) Comparing two versions of the Karolinska Sleepiness Scale (KSS). Sleep Biol Rhythms 14(3):257

    Article  PubMed  PubMed Central  Google Scholar 

  6. Murata A, Naitoh K, Karwowski W (2017) A method for predicting the risk of virtual crashes in a simulated driving task using behavioural and subjective drowsiness measures. Ergonomics 60(5):714

    Article  PubMed  Google Scholar 

  7. Murugan S, Selvaraj J, Sahayadhas A (2020) Detection and analysis: driver state with electrocardiogram (ECG). Phys Eng Sci Med pp. 1–13

  8. Sahayadhas A, Sundaraj K, Murugappan M (2013) Drowsiness detection during different times of day using multiple features. Austral Phys Eng Sci Med 36(2):243

    Article  Google Scholar 

  9. Lal SK, Craig A (2001) A critical review of the psychophysiology of driver fatigue. Biol Psychol 55(3):173

    Article  CAS  PubMed  Google Scholar 

  10. Thilakavathi B, Devi SS, Malaiappan M, Bhanu K (2019) EEG power spectrum analysis for schizophrenia during mental activity. Austral Phys Eng Sci Med 42(3):887

    Article  CAS  Google Scholar 

  11. Farashi S, Khosrowabadi R (2020) EEG based emotion recognition using minimum spanning tree. Phys Eng Sci Med pp. 1–12

  12. Balandong RP, Ahmad RF, Saad MNM, Malik AS (2018) A review on EEG-based automatic sleepiness detection systems for driver. IEEE Access 6:22908

    Article  Google Scholar 

  13. Wang S, Li Y, Wen P, Lai D (2016) Data selection in EEG signals classification. Austral Phys Eng Sci Med 39(1):157

    Article  Google Scholar 

  14. Fulcher BD (2018) Feature-based time-series analysis. In Feature Engineering for Machine Learning and Data Analytics (CRC Press), pp. 87–116

  15. Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, Chooi WT (2015) Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Austral Phys Eng Sci Med 38(1):139

    Article  Google Scholar 

  16. Rohit F, Kulathumani V, Kavi R, Elwarfalli I, Kecojevic V, Nimbarte A (2017) Real-time drowsiness detection using wearable, lightweight brain sensing headbands. IET Intell Trans Sys 11(5):255

    Article  Google Scholar 

  17. Lin CT, Chang CJ, Lin BS, Hung SH, Chao CF, Wang IJ (2010) A real-time wireless brain-computer interface system for drowsiness detection. IEEE Trans Biomed Circuits Sys 4(4):214

    Article  Google Scholar 

  18. Wang P, Min J, Hu J (2018) Ensemble classifier for driver’s fatigue detection based on a single EEG channel. IET Intell Trans Sys 12(10):1322

    Article  Google Scholar 

  19. Shabani H, Mikaili M, Noori SMR (2016) Assessment of recurrence quantification analysis (RQA) of EEG for development of a novel drowsiness detection system. Biomed Eng Lett 6(3):196

    Article  Google Scholar 

  20. Dey I, Jagga S, Prasad A, Sharmila A, Borah SK, Rao G (2017) Automatic detection of drowsiness in EEG records based on time analysis. In Power and Advanced Computing Technologies (i-PACT), 2017 Innovations in (IEEE), pp. 1–5

  21. Bajaj V, Taran S, Khare SK, Sengur A (2020) Feature extraction method for classification of alertness and drowsiness states EEG signals. App Acoust 163:107224

    Article  Google Scholar 

  22. Anitha C (2019) Detection and analysis of drowsiness in human beings using multimodal signals. In Digital Business (Springer), pp. 157–174

  23. Belakhdar I, Kaaniche W, Djemal R, Ouni B (2018) Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features. Microprocess Microsys 58:13

    Article  Google Scholar 

  24. da Silveira TL, Kozakevicius AJ, Rodrigues CR (2016) Automated drowsiness detection through wavelet packet analysis of a single EEG channel. Expert Sys Appl 55:559

    Article  Google Scholar 

  25. Silveira Td, Kozakevicius AdJ, Rodrigues CR (2015) Drowsiness detection for single channel EEG by DWT best m-term approximation. Res Biomed Eng 31(2):107

  26. Li G, Lee BL, Chung WY (2015) Smartwatch-based wearable EEG system for driver drowsiness detection. IEEE Sensors J 15(12):7169

    Article  Google Scholar 

  27. Punsawad Y, Aempedchr S, Wongsawat Y, Panichkun M (2011) Weighted-frequency index for EEG-based mental fatigue alarm system. Int J App 4(1):37

    Google Scholar 

  28. Correa AG, Leber EL (2010) An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE), pp. 1405–1408

  29. Jalilifard A, Pizzolato EB (2016) An efficient K-NN approach for automatic drowsiness detection using single-channel EEG recording. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the (IEEE), pp. 820–824

  30. Correa AG, Orosco L, Laciar E (2014) Automatic detection of drowsiness in EEG records based on multimodal analysis. Med Eng Phy 36(2):244

    Article  Google Scholar 

  31. Borowska M (2015) Entropy-based algorithms in the analysis of biomedical signals. Stud Logic Grammar Rhetoric 43(1):21

    Article  Google Scholar 

  32. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monitor 7(4):335

    Article  CAS  Google Scholar 

  33. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol-Heart Circul Physiol 278(6):H2039

    Article  CAS  Google Scholar 

  34. Chen W, Wang Z, Xie H, Yu W (2007) Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Sys Rehabili Eng 15(2):266

    Article  Google Scholar 

  35. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):1

    Article  CAS  Google Scholar 

  36. Renner R, Wolf S (2004) Smooth Rényi entropy and applications. In International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. (IEEE), pp. 232–232

  37. Tsallis C, Mendes R, Plastino AR (1998) The role of constraints within generalized nonextensive statistics. Phys A: Statist Mechan Appl 261(3):534

    Article  Google Scholar 

  38. Digham FF, Alouini MS, Simon MK (2007) On the energy detection of unknown signals over fading channels. IEEE Trans Commun 55(1):21

    Article  Google Scholar 

  39. Urkowitz H (1967) Energy detection of unknown deterministic signals. Proceed IEEE 55(4):523

    Article  Google Scholar 

  40. Hu J, Min J (2018) Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cogni Neurodyn 12(4):431

    Article  Google Scholar 

  41. Hu J (2017) Automated detection of driver fatigue based on AdaBoost classifier with EEG signals. Front Comput Neurosci 11:72

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hu J, Wang P (2017) Noise robustness analysis of performance for EEG-based driver fatigue detection using different entropy feature sets. Entropy 19(8):385

    Article  Google Scholar 

  43. Fasil O, Rajesh R (2019) Time-domain exponential energy for epileptic EEG signal classification. Neurosc Lett 694:1

    Article  CAS  Google Scholar 

  44. PhysioNet (2018) The Sleep-EDF Database ,MCH-Westeinde Hospital, Den Haag, The Netherlands. https://www.physionet.org/physiobank/database/sleep-edfx/

  45. Zheng WL, Lu BL (2017) A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng 14(2):026017

    Article  PubMed  Google Scholar 

  46. Li Y, Tang X, Xu Z, Liu W, Li J (2016) Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages. Austral Phys Eng Sci Med 39(1):147

    Article  Google Scholar 

  47. Phanikrishna BSCV, Sarkar M (2018) Drowsiness detection by analysis of EEG signal with the help of Machine Learning. In 2018 24th Annual International Conference on Advanced Computing and Communications (ADCOM 2018) (ACS,), pp. 22–27

  48. Pal NR, Chuang CY, Ko LW, Chao CF, Jung TP, Liang SF, Lin CT (2008) EEG-based subject-and session-independent drowsiness detection: an unsupervised approach. EURASIP J Adv Signal Process 2008:192

    Article  Google Scholar 

  49. Islam MK, Rastegarnia A, Yang Z (2016) Methods for artifact detection and removal from scalp EEG: A review. Neurophysiologie Clinique/Clin Neurophysiol 46(4–5):287

    Article  Google Scholar 

  50. Wolpert DH (1996) The lack of a priori distinctions between learning algorithms. Neural comput 8(7):1341

    Article  Google Scholar 

  51. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67

    Article  Google Scholar 

  52. Kumar SS, Kasthuri N (2019) EEG seizure classification based on exploiting phase space reconstruction and extreme learning. Cluster Comp 22(5):11477

    Article  Google Scholar 

  53. Gupta S, Sedamkar R (2020) Machine Learning for Healthcare: Introduction. In Machine Learning with Health Care Perspective (Springer), pp. 1–25

  54. Johnson R, Zhang T (2013) Learning nonlinear functions using regularized greedy forest. IEEE Trans Pattern Anal Machine Intell 36(5):942

    Article  Google Scholar 

  55. Längkvist M, Karlsson L, Loutfi A (2012) Sleep stage classification using unsupervised feature learning. Adv Artif Neural Sys 2012

Download references

Acknowledgements

We would like to thank Prof. Bao-Liang Lu and his research team for the valuable data arrangement. We appreciate his support in providing us the simulated virtual driving dataset for our current research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Phanikrishna Balam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.For this type of study, formal consent is not required.

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balam, V.P., Chinara, S. Development of single-channel electroencephalography signal analysis model for real-time drowsiness detection. Phys Eng Sci Med 44, 713–726 (2021). https://doi.org/10.1007/s13246-021-01020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01020-3

Keywords

Navigation