Skip to main content
Log in

Dosimetry investigation of a prototype of 169Yb seed brachytherapy for use in circular stapler

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This study aims to investigate dosimetry parameters for the new design of 169Yb seed in the form of a surgical staple for circular staplers commonly used in the abdominal incision and the esophageal and gastric surgery, which facilitates the precise placement. This seed includes a titanium tube with the inner diameter and outer diameter 0.68 mm and 2.2 mm, respectively, and length of 0.8 mm. Both sides of the tube are closed by titanium wires with the thickness of 0.65 mm by the laser. Natural ytterbium oxide is used after the thermal neutron activation; it is necessary for cooling time of 40 days. The dosimetry parameters were calculated based on the TG-43U1 using Monte Carlo MCNP5 code. The experimental dosimetry was performed by EBT3 radiochromic film to determine 2D dosimetry at near distance of the source and validate the MC code. The dose rate constant of MC calculation was obtained at 1.39cGyh−1U−1 ± 4% with the difference of 5% compared to another study. The dose distribution was symmetrical along the Z-axis and Y-axis (around the seed) and there was a uniform activity inside the tube. The distinction of dose rate was not noticeable at the 90 and 270 degrees on the Z-axis, which indicated a slight effect on staple legs in the matter of delivery dose. However, to understand dose distribution and introduce this source in a pre-clinical study, 3D dosimetry as well as further studying the heterogeneous function is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nag S, Erickson B, Thomadsen B, Orton C, Demanes JD (2002) The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol 52(1):33–48

    Article  Google Scholar 

  2. Skowronek J (2013) Review article Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer—between options. J Contemp Brachyther 1(1):33–41

    Article  Google Scholar 

  3. Gaspar LE (1998) Brachytherapy in lung cancer. J Surg Oncol 67(1):60–70

    Article  CAS  Google Scholar 

  4. Stewart A, Parashar B, Patel M et al (2016) American Brachytherapy Society consensus guidelines for thoracic brachytherapy for lung cancer. Brachytherapy 15(1):1–11

    Article  CAS  Google Scholar 

  5. Lee P, Kupeli E, Mehta AC (2002) Therapeutic bronchoscopy in lung cancer: Laser therapy, electrocautery, brachytherapy, stents, and photodynamic therapy. Clin Chest Med 23(1):241–256

    Article  Google Scholar 

  6. Fili M, Lundell G, Lundell M, Seregard S (2014) High dose rate and low dose rate ruthenium brachytherapy for uveal melanoma. No association with ocular outcome. Br J Ophthalmol 98(10):1349–1354

    Article  CAS  Google Scholar 

  7. Lazarescu GR, Battista JJ (1999) Analysis of the radiobiology of ytterbium-169 and iodine-125 permanent brachytherapy implants. Phys Med Biol 42(9):1727–1736

    Article  Google Scholar 

  8. Plume CA, Daly SE, Porter AT, Barnett RB, Battista JJ (1993) The relative biological effectiveness of ytterbium-169 for low dose rate irradiation of cultured mammalian cells. Int J Radiat Oncol 25(5):835–840

    Article  CAS  Google Scholar 

  9. MacPherson MS, Battista JJ (1995) Dose distributions and dose rate constants for new ytterbium-169 brachytherapy seeds. Med Phys 22(1):89–96

    Article  CAS  Google Scholar 

  10. Mainegra E, Capote R, López E (1998) Dose rate constants for 125I, 103Pd, 192Ir and 169Yb brachytherapy sources: an EGS4 Monte Carlo study. Phys Med Biol 43(6):1557–1566

    Article  CAS  Google Scholar 

  11. Piermattei A, Azario L, Rossi G, Soriani A, Arcovito G, Ragona R et al (1995) Dosimetry of 169Yb seed model X1267. Phys Med Biol 40(8):1317–1330

    Article  CAS  Google Scholar 

  12. Lymperopoulou G, Papagiannis P, Sakelliou L, Milickovic N, Giannouli S, Baltas D (2005) A dosimetric comparison of 169Yb versus 192Ir for HDR prostate brachytherapy. Med Phys 32(12):3832–3842

    Article  CAS  Google Scholar 

  13. Taylor REP, Rogers DWO (2008) EGSnrc Monte Carlo calculated dosimetry parameters for 192Ir and 169Yb brachytherapy sources. Med Phys 35(11):4933–4944

    Article  CAS  Google Scholar 

  14. Damore SJ, Syed AMN, Puthawala AA, Sharma A (2000) Needle displacement during HDR brachytherapy in the treatment of prostate cancer. Int J Radiat Oncol 46(5):1205–1211

    Article  CAS  Google Scholar 

  15. Whitaker M, Hruby G, Lovett A, Patanjali N (2011) Prostate HDR brachytherapy catheter displacement between planning and treatment delivery. Radiother Oncol 101(3):490–494

    Article  Google Scholar 

  16. Pinkawa M, Asadpuor B, Gagel B, Borchers H, Jakse G, Eble MJ (2007) Evaluation of source displacement and dose–volume changes after permanent prostate brachytherapy with stranded seeds. Radiother Oncol 84(2):190–196

    Article  Google Scholar 

  17. Medich DC, Tries MA, Munro JJ (2005) Monte Carlo characterization of an ytterbium-169 high dose rate brachytherapy source with analysis of statistical uncertainty. Med Phys 33(1):163–172

    Article  Google Scholar 

  18. Cazeca MJ, Medich DC, Munro JJ (2010) Monte Carlo characterization of a new Yb-169 high dose rate source for brachytherapy application. Med Phys 37(3):1129–1136

    Article  CAS  Google Scholar 

  19. Ulyanenko SE, Koryakin SN, Lychagin AA, Kuznetsova N, Potetnya VI, Ulyanenko LN et al (2019) Evaluation of antitumor efficiency of high intensity radiation 169Yb source on experimental sarcoma M-1. Bull Exp Biol Med 167(1):84–86

    Article  CAS  Google Scholar 

  20. Currier B, Munro JJ, Medich DC (2013) Dosimetric characterization of the GammaClipTM 169Yb low dose rate permanent implant brachytherapy source for the treatment of nonsmall cell lung cancer postwedge resection. Med Phys 40(8):ID080701

    Article  Google Scholar 

  21. Leonard KL, DiPetrillo TA, Munro JJ, Wazer DE (2011) A novel ytterbium-169 brachytherapy source and delivery system for use in conjunction with minimally invasive wedge resection of early-stage lung cancer. Brachytherapy 10(2):163–169

    Article  Google Scholar 

  22. Mourtada F, Mikell J, Ibbott G (2012) Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the 125I I-Seed AgX100 source model. Brachytherapy 11(3):237–244

    Article  Google Scholar 

  23. International Atomic Energy Agency (2003) Manual for reactor produced radioisotopes, IAEA-TECDOC-1340. IAEA, Vienna

    Google Scholar 

  24. ISO 2919 (2012) Radiological protection—sealed radioactive sources—general requirements and classification. ISO 2919, Geneva

    Google Scholar 

  25. Rivard MJ, Coursey BM, Dewerd LA, Hanson WF, Huq MS, Ibbott GS et al (2004) Update of AAPM Task Group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674

    Article  Google Scholar 

  26. Devic S, Tomic N, Lewis D (2016) Reference radiochromic film dosimetry: review of technical aspects. Phys Med 32(4):541–556

    Article  Google Scholar 

  27. Brown TAD, Hogstrom KR, Alvarez D, Matthews KL, Ham K, Dugas JP (2012) Dose-response curve of EBT, EBT2, and EBT# radiochromic films to synchrotron-produced monochromic X-ray beams. Med Phys 39(12):7412–7417

    Article  CAS  Google Scholar 

  28. Villarreal-Barajas JE, Khan RFH (2013) Energy response of EBT3 radiochromic films: implications for dosimetry in kilovoltage range. J Appl Clin Med Phys 15(1):331–338

    Article  Google Scholar 

  29. Kennedy RM, Davis SD, Micka JA, DeWerd LA (2010) Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeedTM brachytherapy source. Med Phys 37(4):1681–1688

    Article  CAS  Google Scholar 

  30. Soppera N, Bossant M, Dupont E (2014) JANIS 4: an improved version of the NEA java-based nuclear data information system. Nucl Data Sheets 120:294–296

    Article  CAS  Google Scholar 

  31. Kinsey RR, Dunford CL, Tuli JK, Burrows TW (1996) The NUDAT/PCNUDAT program for nuclear data. Brookhaven National Lab, Upton

    Google Scholar 

  32. Sarabiasl A, Ayoobian N, Poorbaygi H, Javanshir MR (2016) Monte Carlo dosimetry of the IRAsource high dose rate 192Ir brachytherapy source. Aust Phys Eng Sci Med 3:413–422

    Article  Google Scholar 

  33. Medich DC, Munro JJ (2010) Monte Carlo calculations of the AAPM Task Group 43 dosimetry parameters for the source production & Equipment Co (SPEC) model M-31 Ytterbium brachytherapy source. Source Production & Equipment Co. Inc., St. Rose

    Google Scholar 

Download references

Acknowledgements

I need to mention the efforts of our dear colleague, the late Mr. Mohammad Reza Javanshir, who helped us, build the seed source.

Funding

There is no grant as fund for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Poorbaygi.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M.E., Poorbaygi, H., Hadadi, A. et al. Dosimetry investigation of a prototype of 169Yb seed brachytherapy for use in circular stapler. Phys Eng Sci Med 44, 525–534 (2021). https://doi.org/10.1007/s13246-021-01004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01004-3

Keywords

Navigation