Skip to main content
Log in

Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zipes DP, Wellens HJ (1998) Sudden cardiac death. Circulation 98:2334–2351

    CAS  PubMed  Google Scholar 

  2. Scapigliati A, Ristagno G, Cavaliere F (2013) The best timing for defibrillation in shockable cardiac arrest. Anestesiology 79(1):92–101

    CAS  Google Scholar 

  3. Macallan DC, Bell JA, Braddick M, Endersby K, Rizzo-Naudi J (1990) The electrocardiogram in general practice: its use and its interpretation. J R Soc Med 83(9):559–562

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Khazaei M, Raeisi K, Goshvarpour A, Ahmadzadeh M (2018) Early detection of sudden cardiac death using nonlinear analysis of heart rate variability. Biocybern Biomed Eng 38(4):931–940

    Google Scholar 

  5. Liew R (2011) Electrocardiogram based predictors of sudden cardiac death in patients with coronary artery disease. Clin Cardiol 34(8):466–473

    PubMed  PubMed Central  Google Scholar 

  6. Pietrasik G, Zarba W (2012) QRS fragmentation: diagnostic and prognostic significance. Cardiol J 19(2):114–121

    PubMed  Google Scholar 

  7. de Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51:1196–1206

    PubMed  Google Scholar 

  8. Rakshit M, Das S (2017) An efficient wavelet-based automated R-peaks detection method using Hilbert transform. Biocybern Biomed Eng 37(3):566–577

    Google Scholar 

  9. Zijlstra JA, Bekkers LE, Hulleman M (2017) Automated external defibrillator and operator performance in out-of-hospital cardiac arrest. Resuscitation 118:140–146

    PubMed  Google Scholar 

  10. Linker DT (2016) Accurate, automated detection of atrial fibrillation in ambulatory recordings. Cardiovasc Eng Technol 7:182–189

    PubMed  PubMed Central  Google Scholar 

  11. Monalisa M, Sahoo S, Biswal P, Sabut S (2018) Efficient classification of ventricular arrhythmias using feature selection and C4.5 classifier. Biomed Signal Process Control 44:200–208

    Google Scholar 

  12. Sansone M, Fusco R, Pepino A, Sansone C (2013) Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J Healthc Eng 4(4):465–504

    PubMed  Google Scholar 

  13. Hejč J, Vítek M, Ronzhina M et al (2015) A wavelet-based ECG delineation method: adaptation to an experimental electrograms with manifested global ischemia. Cardiovasc Eng Technol 6:364–375

    PubMed  Google Scholar 

  14. Maji U, Mitra M, Pal S (2017) Characterization of cardiac arrhythmias by variational mode decomposition technique. Biocybern Biomed Eng 37(3):3578–3589

    Google Scholar 

  15. Lahmiri S (2014) Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc Technol Lett 1(3):104–109

    PubMed  PubMed Central  Google Scholar 

  16. Anas EA, Lee SY, Hasan MK (2011) Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation. Comput Biol Med 41:110–114

    PubMed  Google Scholar 

  17. Alonso-Atienza F, Morgado E, Fernández-Martínez L, García-Alberola A, Rojo-Álvarez JL (2014) Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans Biomed Eng 61:832–840

    PubMed  Google Scholar 

  18. Li Q, Rajagopalan C, Clifford GD (2014) Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans Biomed Eng 61:1607–1613

    PubMed  Google Scholar 

  19. Panda R, Jain S, Tripathy RK, Acharya UR (2020) Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2020.103939

    Article  PubMed  Google Scholar 

  20. Alwan Y, Cvetkovic Z, Curtis MJ (2018) Methods for improved discrimination between ventricular fibrillation and tachycardia. IEEE Trans Biomed Eng 65(10):2143–2151

    PubMed  Google Scholar 

  21. Hannun AY, Rajpurkar P, Haghpanahi M et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25(3):65–69. https://doi.org/10.1038/s41591-018-0268-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akansu AN, Haddad RA (1992) Multiresolution signal decomposition: transforms, subbands, and wavelets. Academic Press, Boston

    Google Scholar 

  23. Lin H-Y, Liang SY, Ho YL, Lin YH, Ma HP (2014) Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals. Innov Res BioMed Eng 35(6):351–361

    Google Scholar 

  24. Mandic DP, Rehman N, Wu Z, Huang NE (2013) Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Signal Process Mag 30(6):74–86

    Google Scholar 

  25. Xiong H, Zheng C, Liu J, Song L (2019) ECG signal in-band noise de-noising base on EMD. J Circuits Syst Comput 28(1):1950017

    Google Scholar 

  26. Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

    Google Scholar 

  27. Singh P, Pradhan G (2018) Variational mode decomposition-based ECG denoising using non-local means and wavelet domain filtering. Australas Phys Eng Sci Med 41(4):891–904

    PubMed  Google Scholar 

  28. Dreyfus SE (1990) Artificial neural networks, back propagation, and the Kelley-Bryson gradient procedure. J Guid Control Dyn 13(5):926–928

    Google Scholar 

  29. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Google Scholar 

  30. Elola A, Aramendi E, Irusta U, Picón A, Alonso E, Owens P, Idris A (2019) Deep neural networks for ECG-based pulse detection during out-of-hospital cardiac arrest. Entropy 21:305–325

    PubMed Central  Google Scholar 

  31. Acharya UR, Fujita H, Oh SL, Tan RS, Acharya UR (2018) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Fut Gener Comput Syst 79(3):952–959

    Google Scholar 

  32. Sharma M, Singh S, Kumar A et al (2019) Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features. Comput Biol Med 115:103446

    PubMed  Google Scholar 

  33. Swapna G, Soman KP, Vinayakumar R (2018) Automated detection of cardiac arrhythmia using deep learning techniques’. Procedia Comput Sci 132:1192–1201

    Google Scholar 

  34. Xu Y, Wang D, Zhang W, Ping P, Feng L (2018) Detection of ventricular tachycardia and fibrillation using adaptive variational mode decomposition and boosted-CART classifier. Biomed Signal Process Control 39:219–229

    Google Scholar 

  35. Zhen-Xing Z, Tian XW, Lim JS (2010) Real-time algorithm for a mobile cardiac monitoring system to detect life-threatening arrhythmias. Proc Int Conf Comput Autom Eng 4:232–236

    Google Scholar 

  36. Xie HB, Gao ZM, Liu H (2011) Classification of ventricular tachycardia and fibrillation using fuzzy similarity-based approximate entropy. Expert Syst Appl 38:3973–3981

    Google Scholar 

  37. Yıldırım O, Pławiak P, Tan RS, Acharya UR (2018) Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 102:411–420

    PubMed  Google Scholar 

  38. Fokkenrood S, Leijdekkers P, Gay V (2007) Ventricular tachycardia/fibrillation detection algorithm for 24/7 personal wireless heart monitoring. In: Int. conf. on smart homes and health telematics, pp 110–120

  39. Xiong Z, Nash MP, Cheng E, Fedorov VV, Stiles MK, Zhao J (2018) ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol Meas 39(9):094006

    PubMed  PubMed Central  Google Scholar 

  40. Hanbay K (2019) Deep neural network based approach for ECG classification using hybrid differential features and active learning. IET Signal Proc 13(2):165–175

    Google Scholar 

  41. Asgharzadeh-Bonab A, Amirani MC, Mehri A (2020) Spectral entropy and deep convolutional neural network for ECG beat classification. Biocybern Biomed Eng 40(2):691–700

    Google Scholar 

  42. Sannino G, Pietro GD (2018) A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Fut Gener Comput Syst 86:446–455

    Google Scholar 

  43. Mathews SM, Kambhamettu C, Barner KE (2018) A novel application of deep learning for single-lead ECG classification. Comput Biol Med 99:53–62

    PubMed  Google Scholar 

  44. Picon A, Irusta U, Álvarez-Gila A, Aramendi E, Alonso-Atienza F, Figuera C, Ayala U, Garrote E, Wik L, Kramer-Johansen J, Eftestøl T (2019) Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia. PLoS ONE 14:e0216756

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Amann A, Tratnig R, Unterkofler K (2005) Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators. Biomed Eng Online 4(60):1–23

    Google Scholar 

  46. Li Q, Rajagopalan C, Clifford GD (2014) A machine learning approach to multi-level ECG signal quality classification. Comput Methods Prog Biomed 117(3):435–447

    Google Scholar 

  47. Yu SJ, Koh P, Kwon H, Kimg DS, Kim HK (2016) Hurst parameter based anomaly detection for intrusion detection system. In: Int con comp info technology, pp 234–240

  48. Mohanty M, Biswal P, Sabut S (2019) Ventricular tachycardia and fibrillation detection using DWT and decision tree classifier. J Mech Med Biol 19(1):1–23

    Google Scholar 

  49. Watson JN, Addison PS, Clegg GR, Holzer M, Sterz F, Robertson CE (2004) A novel wavelet transform based analysis reveals hidden structure in ventricular fibrillation. Resuscitation 43(2):121–127

    Google Scholar 

  50. Karegowda AG, Manjunath AS, Jayaram MA (2010) Comparative study of attribute selection using gain ratio and correlation based feature selection. Int J Inf Technol Knowl Manag 2(2):271–277

    Google Scholar 

  51. Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv: 1505.00853

  52. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. In: Int. conf. learning representations, pp 1–15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mohanty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was waived by the local Ethics Committee of University A in view of the retrospective nature of the study.

Informed consent

The study not involved any human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabut, S., Pandey, O., Mishra, B.S.P. et al. Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network. Phys Eng Sci Med 44, 135–145 (2021). https://doi.org/10.1007/s13246-020-00964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00964-2

Keywords

Navigation