Skip to main content
Log in

Stability analysis on the effects of heart rate variability and premature activation of atrial ECG dynamics using ARMAX model

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The cellular action potential of cardiac muscles generates Electrocardiogram (ECG) signals. Disturbances in cardiac cells are determined by analyzing the stability of ECG intervals. The PTa Interval (PTaI) of ECG represents the atrial Action Potential Duration (APD) and the evaluation of the causes of PTaI instability can predict the onset of arrhythmia. This study developed an Autoregressive Moving Average with Exogenous Input (ARMAX) model to explore the roles of Heart Rate Variability (HRV) and Premature Activation (PA) in PTaI dynamics using PTaI and PP Interval (PPI) as exogenous inputs. Minute ECG signals were collected from twenty Normal Sinus Rhythm (NSR) and ten Atrial Tachycardia (AT) volunteers. The EDAN PC ECG system was used in the Modified Limb Lead (MLL) configuration to evaluate instability. The instabilities of PTaI were found at the minimum model orders (Amin) of 10 and 11, in the NSR and AT groups, respectively. In the NSR group, the predominant reason for PTaI instability was HRV, whereas among AT patients, it was largely due to PA that preceded the onset of AT. The proposed model showed better prediction of PTaI with minimum Mean Square Error (MSE) between the measured and predicted PTa Intervals (PTaIs). The factor that led to PTaI instability in AT patients was found to be different from that of the NSR group. The frequency of PA (fPA) was found to contribute more in the AT than the NSR group. The developed ARMAX model was better in predicting instability of atrial ECG dynamics in both groups than other autoregressive models currently in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prystowsky EN (1995) Tachycardia-induced tachycardia: a mechanism of initiation of atrial fibrillation. In: Di Marco JP, Prystowsky EN (eds) Atrial arrhythmias. State of the art. Futura Publishing Company, Armonk, pp 81–95

    Google Scholar 

  2. Delise P, Coro L, Scipione P, Fantinel M (1998) Tachycardia induced atrial fibrillation: what incidence? How to diagnose and treat it. In: Raviele A (ed) Cardiac arrhythmias 1997. Springer, Milano, pp 18–23. https://doi.org/10.1007/978-88-470-2288-1_3

    Chapter  Google Scholar 

  3. Magnani JW, Williamson MA, Ellinor PT, Monahan KM et al (2009) P wave indices current status and future directions in epidemiology, clinical, and research applications. Circ Arrhythm Electrophysiol 2:72–79. https://doi.org/10.1161/CIRCEP.108.806828

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eranti A, Carlson J, Kentta T, Holmqvist F et al (2020) Orthogonal P-wave morphology, conventional P-wave indices, and the risk of atrial fibrillation in the general population using data from the Finnish Hospital Discharge Register. Europace. https://doi.org/10.1093/europace/euaa118

    Article  PubMed  Google Scholar 

  5. Rasmussen MU, Kumarathurai P, Bjerre AF, Larsen BS et al (2020) P-wave indices as predictors of atrial fibrillation. Ann Noninvas Electrocardiol 00:e12751. https://doi.org/10.1111/anec.12751

    Article  Google Scholar 

  6. Platonov PG (2012) P-wave morphology: underlying mechanisms and clinical implications. Ann Noninvas Electrocardiol 17:161–169. https://doi.org/10.1111/j.1542-474X.2012.00534.x

    Article  Google Scholar 

  7. Kaplan DT, Furman MI, Pincus SM, Ryan SM et al (1991) Aging and the complexity of cardiovascular dynamics. Biophys J 59:945–949. https://doi.org/10.1016/S0006-3495(91)82309-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Havmoller R, Carlson J, Holmqvist F, Herreros A et al (2007) Age-related changes in P wave morphology in healthy group. BMC Cardiovasc Disor. https://doi.org/10.1186/1471-2261-7-22

    Article  Google Scholar 

  9. German DM, Kabir MM, Dewland TA, Henrikson CA et al (2016) Atrial fibrillation predictors: Importance of the electrocardiogram. Ann Noninvas Electrocardiol 21:20–29. https://doi.org/10.1111/anec.12321

    Article  Google Scholar 

  10. Childers R (2011) Atrial repolarization: Its impact on electrocardiography. J Electrocardiol 44:635–640. https://doi.org/10.1016/j.jelectrocard.2011.07.031

    Article  PubMed  Google Scholar 

  11. Tanabe J, Tanabe K (2020) False positive ST segment elevation. Eur Heart J Case Rep 4:1–2. https://doi.org/10.1093/ehjcr/ytaa018

    Article  PubMed  PubMed Central  Google Scholar 

  12. Debbas NM, Jackson SH, Jonghe D, Robert A, Camm AJ (1999) Human atrial repolarization: effects of sinus rate, pacing and drugs on the surface electrocardiogram. J Am Coll Cardiol 33:358–365. https://doi.org/10.1016/s0735-1097(98)00580-4

    Article  CAS  PubMed  Google Scholar 

  13. Kališnik JM, Avbelj V, Vratanar J, Santarpino G et al (2019) Cardiac autonomic regulation and PR interval determination for enhanced atrial fibrillation risk prediction after cardiac surgery. Int J Cardiol 15:24–29. https://doi.org/10.1016/j.ijcard.2019.04.070

    Article  Google Scholar 

  14. Wallace E, Howard L, Liu M, O’Brien T et al (2019) Long QT syndrome: genetics and future perspective. Pediatr Cardiol 40:1419–1430. https://doi.org/10.1007/s00246-019-02151-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. El-Sherif N, Turitto G, Boutjdir M (2019) Acquired long QT syndrome and electrophysiology of Torsade de Pointes. Arrhythm Electrophysiol Rev 8:122–130. https://doi.org/10.15420/aer.2019.8.3

    Article  PubMed  PubMed Central  Google Scholar 

  16. El-Sherif N, Turitto G, Boutjdir M (2018) Acquired long QT syndrome and Torsade de Pointes. Pacing Clin Electrophysiol 41:414–421. https://doi.org/10.1111/pace.13296

    Article  PubMed  Google Scholar 

  17. Yao L, Li P, Liu C, Hou Y et al (2019) Comparison of QT interval variability of coronary patients without myocardial infarction with that of patients withold myocardial infarction. Comput Biol Med 113:103396. https://doi.org/10.1016/j.compbiomed.2019.103396

    Article  PubMed  Google Scholar 

  18. Mittal S (2019) QT interval—its measurement and clinical significance. J Clin Prev Cardiol 8:71–79. https://doi.org/10.4103/JCPC.JCPC_44_18

    Article  Google Scholar 

  19. Szydlo K, Trusz-Gluza M, Wita K, Filipecki A et al (2008) QT/RR relationship in patients after remote anterior myocardial infarction with left ventricular dysfunction and different types of ventricular arrhythmias. Ann Noninvas Electrocardiol 13:61–66. https://doi.org/10.1111/j.1542-474X.2007.00201.x

    Article  Google Scholar 

  20. Couderc JP (2009) Measurement and regulation of cardiac ventricular repolarization: from the QT interval to repolarization morphology. Philos Trans A Math Phys Eng Sci 367:1283–1299. https://doi.org/10.1098/rsta.2008.0284

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zaman JAB, Narayan SM, Franz MR (2020) Action potential dynamics in human atrial fibrillation. In: El-Sherif N (ed) Cardiac Repolariz. Springer, Cham, pp 333–345

    Chapter  Google Scholar 

  22. Narayan SM, Franz MR, Clopton P, Pruvot EJ et al (2011) Repolarization alternans reveals vulnerability to human atrial fibrillation. Circ 123:2922–2930. https://doi.org/10.1161/CIRCULATIONAHA.110.977827

    Article  Google Scholar 

  23. Ni H, Zhang H, Grandi E, Narayan SM et al (2018) Transient outward K + current can strongly modulate action potential duration and initiate alternans in human atrium. Am J Physiol Heart CircPhysiol 316:H527–H542. https://doi.org/10.1152/ajpheart.00251.2018

    Article  CAS  Google Scholar 

  24. Nolasco JB, Dahlen RW (1968) A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol 25:191–196. https://doi.org/10.1152/jappl.1968.25.2.191

    Article  CAS  PubMed  Google Scholar 

  25. Kesmia M, Boughaba S, Jacquir S (2019) Nonlinear dynamics of two-dimensional cardiac action potential duration mapping model with memory. J Math Biol 78:1529–1552. https://doi.org/10.1007/s00285-018-1318-7

    Article  CAS  PubMed  Google Scholar 

  26. Halamek J, Jurak P, Lipoldova J, Leinveber P et al (2010) QT/RR coupling and gender differences. Comput Cardiol 37:365–368

    Google Scholar 

  27. Chen X, Trayanova NA (2012) A novel methodology for assessing the bounded-input bounded-output instability in QT interval dynamics: application to clinical ECG with ventricular tachycardia. IEEE Trans Biomed Eng 59:2111–2117. https://doi.org/10.1109/TBME.2011.2170837

    Article  PubMed  Google Scholar 

  28. Imam MH, Karmakar CK, Khandoker AH, Palaniswami M (2013) Effect of premature activation in analyzing QT dynamics instability using QT-RR model for ventricular fibrillation and healthy group. In: Proc Ann Int Conf IEEE Eng Med Biol Soc EMBS 25592562. https://doi.org/10.1109/embc.2013.6610062

  29. Acharya UR, Joseph KP, Kannathal N, Lim CM et al (2006) Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051. https://doi.org/10.1007/s11517-006-01190

    Article  Google Scholar 

  30. Sivaraman J, Uma G, Venkatesan S, Umapathy M et al (2015) Normal limits of ECG measurements related to atrial activity using a modified limb lead system. Anatol J Cardiol 15:2–6. https://doi.org/10.5152/akd.2014.5155

    Article  CAS  PubMed  Google Scholar 

  31. Sivaraman J, Uma G, Umapathy M (2012) A modified chest leads for minimization of ventricular activity in electrocardiograms. In: Proc Int Conf Biomed Eng Penang, Malaysia, pp 79–82. https://doi.org/10.1109/ICoBE.2012.6178959

  32. Sivaraman J, Uma G, Venkatesan S, Umapathy M et al (2013) A novel approach to determine atrial repolarization in electrocardiograms. J Electrocardiol 46:e1. https://doi.org/10.1016/j.jelectrocard.2013.05.009

    Article  Google Scholar 

  33. Sivaraman J, Renu J (2017) Effects of sinus rhythm on atrial ECG components using modified limb lead system. In: Int Conf Signal Proc Compt and Control, pp 527–530. https://doi.org/10.1109/ISPCC.2017.8269735.

  34. Jayaraman S, Sangareddi V, Periyasamy R, Joseph J (2017) Modified limb lead ECG system effects on electrocardiographic wave amplitudes and frontal plane axis in sinus rhythm group. Anatol J Cardiol 17:46–54. https://doi.org/10.14744/AnatolJCardiol.2016.6843

    Article  PubMed  Google Scholar 

  35. Sivaraman J, Uma G, Venkatesan S, Umapathy M et al (2014) A study on atrial Ta wave morphology in healthy group: an approach using P wave signal-averaging method. J Med Imaging Health Inform 4:675–680. https://doi.org/10.1166/jmihi.2014.1306

    Article  Google Scholar 

  36. Sivaraman J, Uma G, Langley P, Umapathy M (2016) A study on stability analysis of atrial repolarization variability using ARX model in sinus rhythm and atrial tachycardia ECGs. Comput Methods Programs Biomed 137:341–351. https://doi.org/10.1016/j.cmpb.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  37. Huikuri HV, Valkama JO, Airaksinen KE, Seppanen T (1993) Frequency domain measures of heart rate variability before the onset of nonsustained and sustained ventricular tachycardia in patients with coronary artery disease. Circulation 87:1220–1228. https://doi.org/10.1161/01.cir.87.4.1220

    Article  CAS  PubMed  Google Scholar 

  38. Almeida R, Gouveia S, Rocha AP, Pueyo E et al (2006) QT variability and HRV interactions in ECG: quantification and reliability. IEEE Trans Biomed Eng 53:1317–1329. https://doi.org/10.1109/TBME.2006.873682

    Article  PubMed  Google Scholar 

  39. Porta A, Tobaldini E, Gnecchi-Ruscone T, Montano N (2010) RT variability unrelated to heart period and respiration progressively increases during graded head-up tilt. Am J Physiol 298:1406–1415. https://doi.org/10.1152/ajpheart.01206.2009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Ministry of Education, Government of India. The present study was supported by financial grants from the Science Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (EEQ/2019/000148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sivaraman.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest in this study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumughan, J., Bhardwaj, A. & Sivaraman, J. Stability analysis on the effects of heart rate variability and premature activation of atrial ECG dynamics using ARMAX model. Phys Eng Sci Med 43, 1361–1370 (2020). https://doi.org/10.1007/s13246-020-00940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00940-w

Keywords

Navigation