Skip to main content
Log in

Development of a method for treating lower-eyelid carcinomas using superficial high dose rate brachytherapy

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this study, a method was developed for delivering high dose rate (HDR) brachytherapy treatments to basal cell carcinomas (BCCs) as well as squamous cell carcinomas (SCCs) of the lower eyelid via superficial catheters. Clinically-realistic BCC/SCC treatment areas were marked in the lower-eyelid region on a head phantom and several arrangements of catheters and bolus were trialled for treating those areas. The use of one or two catheters of different types was evaluated, and sources of dosimetric uncertainty (including air gaps) were evaluated and mitigated. Test treatments were planned for delivery with an iridium-192 source, using the Oncentra Brachy treatment planning system (Elekta AB, Stockholm, Sweden). Dose distributions were evaluated using radiochromic film. The proposed method was shown to be clinically viable, for using superficial HDR brachytherapy to overcome anatomical difficulties and create non-surgical treatments for BCC and SCC of the lower eyelid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manghani J, Khan K (2016) A study of role of brachytherapy IR192 in treatment of eyelid tumors. Int J Med Res Rev 4:08

    Article  Google Scholar 

  2. Guix B, Finestres F, Tello J, Palma C, Martinez A, Guix J, Guix R (2000) Treatment of skin carcinomas of the face by high dose rate brachytherapy and custom made surface molds. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/s0360-3016(99)00547-7

    Article  PubMed  Google Scholar 

  3. Frakulli R, Galuppi A, Cammelli S, Macchia G, Cima S, Gambacorta MA, Cafaro I, Tagliaferri L, Perrucci E, Buwenge M, Frezza G, Valentini V, Morganti AG (2015) Brachytherapy in non melanoma skin cancer of eyelid: a systematic review. J Contemp Brachyther 7(6):497–502. https://doi.org/10.5114/jcb.2015.56465

    Article  Google Scholar 

  4. Daly NJ, De Lafontan B, Combes PF (1984) Results of the treatment of 165 lid carcinomas by iridium wire implant. Int J Radiat Oncol Biol Phys 10(4):455–459

    Article  CAS  Google Scholar 

  5. Arnott S, Law J, Ash D, Flynn A, Paine C, Durrant K, Barber C, Dixon-Brown A (1985) Problems associated with iridium-192 wire implants. Clin Radiol 36(3):283–285

    Article  CAS  Google Scholar 

  6. Krengli M, Masini L, Comoli A, Negri E, Deantonio L, Filomeno A, Gambaro G (2014) Interstitial brachytherapy for eyelid carcinoma. Strahlenther Onkol 190(3):245

    Article  CAS  Google Scholar 

  7. Azad S, Choudhary V (2011) Treatment results of high dose rate interstitial brachytherapy in carcinoma of eye lid. J Cancer Res Ther 7(2):157–161. doi:https://doi.org/10.4103/0973-1482.82922

    Article  PubMed  Google Scholar 

  8. Alam M, Nanda S, Mittal BB, Kim NA, Yoo S (2011) The use of brachytherapy in the treatment of nonmelanoma skin cancer: a review. J Am Acad Dermatol 65(2):377–388

    Article  Google Scholar 

  9. Somanchi B, Stanton A, Webb M, Loncaster J, Allan E, Muir L (2008) Hand function after high dose rate brachytherapy for squamous cell carcinoma of the skin of the hand. Clin Oncol 20(9):691–697

    Article  CAS  Google Scholar 

  10. Kowalik L, Lyczek J, Sawicki M, Kazalski D (2013) Individual applicator for brachytherapy for various sites of superficial malignant lesions. J Contemp Brachyther 5(1):45–49. https://doi.org/10.5114/jcb.2013.34340

    Article  Google Scholar 

  11. DeSimone JA, Guenova E, Carter JB, Chaney KS, Aldridge JR, Noell CM, Dorosario AA, Hansen JL, Kupper TS, Devlin PM (2013) Low-dose high-dose-rate brachytherapy in the treatment of facial lesions of cutaneous T-cell lymphoma. J Am Acad Dermatol 69(1):61–65. doi:https://doi.org/10.1016/j.jaad.2012.12.975

    Article  PubMed  Google Scholar 

  12. Jumeau R, Renard-Oldrini S, Courrech F, Buchheit I, Oldrini G, Vogin G, Peiffert D (2016) High dose rate brachytherapy with customized applicators for malignant facial skin lesions. Cancer/Radiothérapie 20(5):341–346. https://doi.org/10.1016/j.canrad.2016.03.008

    Article  CAS  Google Scholar 

  13. Semrau S, Kunz M, Baggesen K, Vogel H, Buchmann W, Gross G, Fietkau R (2008) Successful treatment of field cancerization of the scalp by surface mould brachytherapy. Br J Dermatol. https://doi.org/10.1111/j.1365-2133.2008.08720.x

    Article  PubMed  Google Scholar 

  14. Vavassori A, Riva G, Durante S, Fodor C, Comi S, Cambria R, Cattani F, Spadola G, Orecchia R, Jereczek-Fossa BA (2019) Mould-based surface high-dose-rate brachytherapy for eyelid carcinoma. J Contemp Brachyther 11(5):443–448. https://doi.org/10.5114/jcb.2019.88619

    Article  Google Scholar 

  15. Hansen E, Roach M (2006) Handbook of evidence-based radiation oncology. Springer, New York

    Google Scholar 

  16. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, Mitch MG, Nath R, Williamson JF (2004) Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674. https://doi.org/10.1118/1.1646040

    Article  PubMed  Google Scholar 

  17. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med Phys 22(2):209–234. https://doi.org/10.1118/1.597458

    Article  CAS  PubMed  Google Scholar 

  18. Beaulieu L, Carlsson Tedgren Å, Carrier JF, Davis SD, Mourtada F, Rivard MJ, Thomson RM, Verhaegen F, Wareing TA, Williamson JF (2012) Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG‐43 formalism: current status and recommendations for clinical implementation. Med Phys 39(10):6208–6236

    Article  Google Scholar 

  19. Petrokokkinos L, Zourari K, Pantelis E, Moutsatsos A, Karaiskos P, Sakelliou L, Seimenis I, Georgiou E, Papagiannis P (2011) Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator. Med Phys 38(4):1981–1992. doi:https://doi.org/10.1118/1.3567507

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Z, Parsai EI, Feldmeier JJ (2007) Three-dimensional quantitative dose reduction analysis in MammoSite balloon by Monte Carlo calculations. J Appl Clin Med Phys 8(4):2669

    Article  Google Scholar 

  21. Bensaleh S, Bezak E, Borg M (2009) Review of MammoSite brachytherapy: advantages, disadvantages and clinical outcomes. Acta Oncol 48(4):487–494

    Article  CAS  Google Scholar 

  22. Mille MM, Xu XG, Rivard MJ (2010) Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR or electronic sources using Monte Carlo simulations in a heterogeneous human phantom a. Med Phys 37(2):662–671

    Article  CAS  Google Scholar 

  23. Pantelis E, Papagiannis P, Karaiskos P, Angelopoulos A, Anagnostopoulos G, Baltas D, Zamboglou N, Sakelliou L (2005) The effect of finite patient dimensions and tissue inhomogeneities on dosimetry planning of 192Ir HDR breast brachytherapy: a Monte Carlo dose verification study. Int J Radiat Oncol Biol Phys 61(5):1596–1602

    Article  Google Scholar 

  24. Kassas B, Mourtada F, Horton JL, Lane RG, Buchholz TA, Strom EA (2006) Dose modification factors for 192Ir high-dose‐rate irradiation using Monte Carlo simulations. J Appl Clin Med Phys 7(3):28–34

    Article  Google Scholar 

  25. Poon E, Le Y, Williamson JF, Brachy VF (2018) GUI: an adjunct to an accelerated Monte Carlo photon transport code for patient-specific brachytherapy dose calculations and analysis. J Phys Conf Ser. 1:012018

    Google Scholar 

  26. Islam MA, Akramuzzaman MM, Zakaria GA (2012) Dosimetric comparison between the microSelectron HDR (192)Ir v2 source and the BEBIG (60)Co source for HDR brachytherapy using the EGSnrc Monte Carlo transport code. J Med Phys 37(4):219–225. https://doi.org/10.4103/0971-6203.103608

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peet SC, Wilks R, Kairn T, Trapp JV, Crowe SB (2016) Calibrating radiochromic film in beams of uncertain quality. Med Phys 43(10):5647–5652

    Article  Google Scholar 

  28. Xu X, Zhao S, Liu H, Sun Z, Wang J, Zhang W (2017) An Anatomical study of maxillary-zygomatic complex using three-dimensional computerized tomography-based zygomatic implantation. BioMed Res Int. https://doi.org/10.1155/2017/8027307

    Article  PubMed  PubMed Central  Google Scholar 

  29. Montero A, Hernanz R, Capuz AB, Fernández E, Hervás A, Colmenares R, Polo A, Sancho S, Molerón R, Vallejo C, Ramos A (2009) High-dose-rate (HDR) plesiotherapy with custom-made moulds for the treatment of non-melanoma skin cancer. Clin Transl Oncol 11(11):760–764. https://doi.org/10.1007/s12094-009-0439-2

    Article  PubMed  Google Scholar 

  30. Kairn T, Stephens H, Crowe S, Peet S (2019) Optically stimulated luminescence dosimeters as an alternative to radiographic film for performing “head-wrap” linac leakage measurements. In: Singapore, 2019. World Congress on Medical Physics and Biomedical Engineering 2018. Springer, Singapore, pp 553–555

  31. Ricotti R, Vavassori A, Bazani A, Ciardo D, Pansini F, Spoto R, Sammarco V, Cattani F, Baroni G, Orecchia R, Jereczek-Fossa BA (2016) 3D-printed applicators for high dose rate brachytherapy: dosimetric assessment at different infill percentage. Phys Med Eur J Med Phys 32(12):1698–1706. https://doi.org/10.1016/j.ejmp.2016.08.016

    Article  Google Scholar 

  32. Jones EL, Tonino Baldion A, Thomas C, Burrows T, Byrne N, Newton V, Aldridge S (2017) Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy. Brachytherapy 16(2):409–414. doi:https://doi.org/10.1016/j.brachy.2016.11.003

    Article  PubMed  Google Scholar 

  33. Kairn T, Stephens H, Deans C (2020) Accuracy of optically stimulated luminescence dosimeter measurements of skin dose from high dose rate brachytherapy. Phys Sci Eng Med. https://doi.org/10.1007/s13246-019-00826-6

    Article  Google Scholar 

Download references

Funding

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Stephens.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephens, H., Deans, C., Schlect, D. et al. Development of a method for treating lower-eyelid carcinomas using superficial high dose rate brachytherapy. Phys Eng Sci Med 43, 1317–1325 (2020). https://doi.org/10.1007/s13246-020-00935-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00935-7

Keywords

Navigation