Skip to main content

Advertisement

Log in

Automated diagnosis of encephalitis in pediatric patients using EEG rhythms and slow biphasic complexes

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Slow biphasic complexes (SBC) have been identified in the EEG of patients suffering for inflammatory brain diseases. Their amplitude, location and frequency of appearance were found to correlate with the severity of encephalitis. Other characteristics of SBCs and of EEG traces of patients could reflect the grade of pathology. Here, EEG rhythms are investigated together with SBCs for a better characterization of encephalitis. EEGs have been acquired from pediatric patients: ten controls and ten encephalitic patients. They were split by neurologists into five classes of different severity of the pathology. The relative power of EEG rhythms was found to change significantly in EEGs labeled with different severity scores. Moreover, a significant variation was found in the last seconds before the appearance of an SBC. This information and quantitative indexes characterizing the SBCs were used to build a binary classification decision tree able to identify the classes of severity. True classification rate of the best model was 76.1% (73.5% with leave-one-out test). Moreover, the classification errors were among classes with similar severity scores (precision higher than 80% was achieved considering three instead of five classes). Our classification method may be a promising supporting tool for clinicians to diagnose, assess and make the follow-up of patients with encephalitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adamczyk M, Genzel L, Dresler M, Steiger A, Friess F (2015) Automatic sleep spindle detection and genetic influence estimation using continuous wavelet transform. Front Hum Neurosci 19(9):624

    Google Scholar 

  2. Amodio P, Marchetti P, Del Piccolo F, de Tourtchaninoff M, Varghese P, Zuliani C, Campo G, Gatta A, Guérit JM (1999) Spectral versus visual EEG analysis in mild hepatic encephalopathy. Clin Neurophysiol 110(8):1334–44

    CAS  PubMed  Google Scholar 

  3. Azuma H, Hori S, Nakanishi M, Fujimoto S, Ichikawa N, Furukawa TA (2003) An intervention to improve the interrater reliability of clinical EEG interpretations. Psychiatry Clin Neurosci 57(5):485–9

    PubMed  Google Scholar 

  4. Babiloni C, Barry R, Basar E, Blinowska K, Cichocki A, Drinkenburg W, Klimesch W, Knight R, Lopes da Silva F, Nunez P, Oostenveld R, Jeong J, Pascual-Marqui R, Valdes-Sosa P, Hallett M (2020) International Federation of Clinical Neurophysiology (IFCN)–EEG research workgroup: recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: applications in clinical research studies. Clin Neurophysiol 131(1):285–307

    PubMed  Google Scholar 

  5. Barbadoro P, Marigliano A, Ricciardi A, D’Errico MM, Prospero E (2012) Trend of hospital utilization for encephalitis. Epidemiol Infect 140(4):753–64

    CAS  PubMed  Google Scholar 

  6. Beaumanoir A, Magistris M, Nahory A (1985) Sporadic slow biphasic complex: description and clinical correlations. Electroencephalogr Clin Neurophysiol 61(3):S142

    Google Scholar 

  7. Beaumanoir A, Burkhard P, Gauthier G, Le Floch-Rohr J, Ochsner F, Waldvogel F (1988) EEG recordings in 19 cases of AIDS with encephalic involvement. Neurophysiol Clin 18(4):313–22 (in French)

    CAS  PubMed  Google Scholar 

  8. Beaumanoir A, Nahory A (1992) EEG in HIV infection. Neurophysiol Clin 22(5):355–68 (in Review. French)

    CAS  PubMed  Google Scholar 

  9. Beaumanoir A, Grioni D, Kullmann G, Tiberti A, Valseriati D (1997) EEG anomalies in the prodromic phase of Rasmussen’s syndrome. Report of two cases. Neurophysiol Clin 27(1):25–32 (in French)

    CAS  PubMed  Google Scholar 

  10. Bien CG, Granata T, Antozzi C, Cross JH, Dulac O, Kurthen M, Lassmann H, Mantegazza R, Villemure JG, Spreafico R, Elger CE (2005) Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain 128(3):454–71

    CAS  PubMed  Google Scholar 

  11. Boashash B, Azem G (2014) A review of time-frequency matched filter design with application to seizure detection in multichannel newborn EEG. Dig Sig Proc 28:28–38

    Google Scholar 

  12. Boucher A, Herrmann JL, Morand P, Buzelé R, Crabol Y, Stahl JP, Mailles A (2017) Epidemiology of infectious encephalitis causes in 2016. Med Mal Infect 47(3):221–35

    CAS  PubMed  Google Scholar 

  13. Burquier V, Koralnik IJ, Vibert D, Burkhard P, Beaumanoir A, Jallon P, Mayer E, Hirschel B (1997) Effect of antiretroviral treatment on early electroencephalographic and otoneurologic manifestations in HIV infection and prognostic importance of verified perturbations. Neurophysiol Clin 27(6):508–519 (in French)

    CAS  PubMed  Google Scholar 

  14. Capovilla G, Paladin F, Dalla Bernardina B (1997) Rasmussen’s syndrome: longitudinal EEG study from the first seizure to epilepsia partialis continua. Epilepsia 38(4):483–8

    CAS  PubMed  Google Scholar 

  15. Chen L, Zhu M, Zhou H, Liang J (2010) Clinical study of West syndrome with PS and late-onset epileptic spasms. Epilepsy Res 89(1):82–8

    PubMed  Google Scholar 

  16. Cooray GK, Sengupta B, Douglas P, Englund M, Wickstrom R, Friston K (2015) Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling. Neuroimage 118:508–19

    PubMed  PubMed Central  Google Scholar 

  17. Crevecoeur G, Hallez H, Van Hese P, D’Asseler Y, Dupre L, Van de Walle R (2008) A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data. Med Biol Eng Comput 46(8):767–77

    PubMed  Google Scholar 

  18. Ding L, Wilke C, Xu B, Xu X, van Drongelen W, Kohrman M, He B (2007) EEG source imaging: correlating source locations and extents with electrocorticography and surgical resections in epilepsy patients. J Clin Neurophysiol 24(2):130–6

    PubMed  PubMed Central  Google Scholar 

  19. Doble M, Narayan SK (2008) Mathematical analysis of EEG of patients with non-fatal nonspecific diffuse encephalitis. Intern J Biol Med Sci 3:4

    Google Scholar 

  20. Drislane FW (2013) Overlap of encephalopathies and epileptic seizures. J Clin Neurophysiol 30(5):468–76

    PubMed  Google Scholar 

  21. Falchek SJ (2012) Encephalitis in the Pediatric Population. Pediatrics Rev 33:122–33

    Google Scholar 

  22. Furnkranz J (2002) Round robin classification. J Mach Learn Res 2:721–747

    Google Scholar 

  23. Gatti A, Guarneri M, Motto CA, Vigliano P, Beaumanoir A (1997) Slow biphasic complex: electro-clinical considerations. Ital J Neurol Sci 18(4):99

    Google Scholar 

  24. Granata T, Gobbi G, Spreafico R, Vigevano F, Capovilla G, Ragona F, Freri E, Chiapparini L, Bernasconi P, Giordano L, Bertani G, Casazza M, Dalla Bernardina B, Fusco L (2003) Rasmussen’s encephalitis: early characteristics allow diagnosis. Neurology 60(3):422–5

    CAS  PubMed  Google Scholar 

  25. Granata T, Andermann F (2013) Rasmussen encephalitis. Handb Clin Neurol 111:511–9

    PubMed  Google Scholar 

  26. Grioni D, Contri M, Kullmann G (2009) Are Slow Biphasic Waves (SBW) a possible bioelectrical marker of acute structural cerebral events? Report of four cases with acute symptomatic seizures at the onset. Bull Lega It Epil 138:23–24 (in Italian)

    Google Scholar 

  27. Jacob JE, Nair GK, Iype T, Cherian A (2018) Diagnosis of encephalopathy based on energies of EEG subbands using discrete wavelet transform and support vector machine. Neurol Res Int 2:1613456

    Google Scholar 

  28. Ji Z, Sugi T, Goto S, Wang X, Ikeda A, Nagamine T, Shibasaki H, Nakamura M (2011) An automatic spike detection system based on elimination of false positives using the large-area context in the scalp EEG. IEEE Trans Biomed Eng 58(9):2478–88

    PubMed  Google Scholar 

  29. Kaminska A, Eisermann M, Plouin P (2019) Child EEG (and maturation). Handb Clin Neurol 160:125–142

    CAS  PubMed  Google Scholar 

  30. Qazi Khurram I, Lam HK, Xiao Bo, Ouyang Gaoxiang, Yin Xunhe (2016) Classification of epilepsy using computational intelligence techniques. CAAI Trans Intell Technol 1(2):137–149

    Google Scholar 

  31. Kneen R, Michael BD, Menson E, Mehta B, Easton A, Hemingway C, Klapper PE, Vincent A, Lim M, Carrol E, Solomon T (2012) National Encephalitis Guidelines Development and Stakeholder Groups. Management of suspected viral encephalitis in children–association of British Neurologists and British Paediatric Allergy, Immunology and Infection Group national guidelines. J Infect 64(5):449–77

    CAS  PubMed  Google Scholar 

  32. Koralnik IJ, Beaumanoir A, Hausler R, Kohler A, Safran AB, Delacoux R, Vibert D, Mayer E, Burkhard P, Nahory A, Magistris MR, Sanches J, Myers P, Paccolat F, Quoex F, Gabriel V, Perrin L, Mermillod B, Gauthier G, Waldvogel FA, Hirschel B (1990) A controlled study of early neurologic abnormalities in men with asymptomatic human immunodeficiency virus infection. N Engl J Med 323(13):864–870. Erratum in: N Engl J Med 323(24):1716, 1990

  33. Longaretti F, Dunkley C, Varadkar S, Vargha-Khadem F, Boyd SG, Cross JH (2012) Evolution of the EEG in children with Rasmussen’s syndrome. Epilepsia 53(9):1539–1545

    PubMed  Google Scholar 

  34. Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4(2):R1–R13

    CAS  PubMed  Google Scholar 

  35. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng 15(3):031005

    CAS  PubMed  Google Scholar 

  36. Mesin L, Costa P (2014) Prognostic value of EEG indexes for the Glasgow outcome scale of comatose patients in the acute phase. J Clin Monit Comput 28(4):377–85

    PubMed  Google Scholar 

  37. Mesin L, Valerio M, Beaumanoir A, Capizzi G (2019) Automatic identification of Slow Biphasic Complexes in EEG: an effective tool to detect Encephalitis. Biomed Phys Eng Express 5:045006

    Google Scholar 

  38. Mesin L, Valerio M, Capizzi G (2019) Detection and Assessment of Encephalitis from EEG. IEEE conference on computational intelligence in bioinformatics and computational biology, Certosa di Pontignano (Siena), Tuscany (Italy), 9–11 July

  39. Mohammad SS, Soe SM, Pillai SC, Nosadini M, Barnes EH, Gill D, Dale RC (2016) Etiological associations and outcome predictors of acute electroencephalography in childhood encephalitis. Clin Neurophysiol 127(10):3217–3224

    PubMed  Google Scholar 

  40. Piquet AL, Cho TA (2016) The clinical approach to encephalitis. Curr Neurol Neurosci Rep 16(5):45

    PubMed  Google Scholar 

  41. Rosenberg S, Périn B, Michel V, Debs R, Navarro V, Convers P (2015) EEG in adults in the laboratory or at the patient’s bedside. Neurophysiol Clin 45(1):19–37

    CAS  PubMed  Google Scholar 

  42. Rusalova MN (2006) Frequency-amplitude characteristics of the EEG at different levels of consciousness. Neurosci Behav Physiol 36(4):351–8

    CAS  PubMed  Google Scholar 

  43. Scheuer ML, Bagic A, Wilson SB (2017) Spike detection: Inter-reader agreement and a statistical Turing test on a large data set. Clin Neurophysiol 128(1):243–50

    PubMed  Google Scholar 

  44. Sheth R (2019) Patterns specific to pediatric EEG. J Clin Neurophysiol 36(4):289–293

    PubMed  Google Scholar 

  45. Stamoulis C, Richardson AG (2010) Application of matched filtering to identify behavioral modulation of brain oscillations. J Comput Neurosci 29(1–2):63–72

    PubMed  Google Scholar 

  46. Stevenson NJ, Korotchikova I, Temko A, Lightbody G, Marnane WP, Boylan GB (2013) An automated system for grading EEG abnormality in term neonates with hypoxic-ischaemic encephalopathy. Ann Biomed Eng 41(4):775–85

    CAS  PubMed  Google Scholar 

  47. Stroink H, Schimsheimer RJ, de Weerd AW, Geerts AT, Arts WF, Peeters EA, Brouwer OF, Boudewijn Peters A, van Donselaar CA (2006) Interobserver reliability of visual interpretation of electroencephalograms in children with newly diagnosed seizures. Dev Med Child Neurol 48(5):374–377

    PubMed  Google Scholar 

  48. Sutter R, Kaplan PW (2013) Clinical and electroencephalographic correlates of acute encephalopathy. J Clin Neurophysiol 30(5):443–53

    PubMed  Google Scholar 

  49. Sutter R, Kaplan PW, Cervenka MC, Thakur KT, Asemota AO, Venkatesan A, Geocadin RG (2015) Electroencephalography for diagnosis and prognosis of acute encephalitis. Clin Neurophysiol 126(8):1524–31

    PubMed  Google Scholar 

  50. Tanoue K, Oguni H, Nakayama N, Sasaki K, Ito Y, Imai K, Osawa M (2008) Focal epileptic spasms, involving one leg, manifesting during the clinical course of west syndrome (WS). Brain Dev 30(2):155–9

    PubMed  Google Scholar 

  51. Tauber SC, Eiffert H, Bruck W, Nau R (2017) Septic encephalopathy and septic encephalitis. Expert Rev Anti Infect Ther 15(2):121–32

    CAS  PubMed  Google Scholar 

  52. Thompson C, Kneen R, Riordan A, Kelly D, Pollard AJ (2012) Encephalitis in children. Arch Dis Child 97(2):150–61

    PubMed  Google Scholar 

  53. Trevor H, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer Series in Statistics, Springer, New York

    Google Scholar 

  54. Tsamardinos I, Rakhshani A, Lagani V (2014) Performance-estimation properties of cross-validation-based protocols with simultaneous hyperparameter optimization. In: Proceedings of 8th Hellenic conference artificial intelligence: methods and applications, pp 1–14

  55. Tuncer T, Dogan S, Akbal E (2019) A novel local senary pattern based epilepsy diagnosis system using EEG signals. Aust Phys Eng Sci Med 42(4):939–48

    Google Scholar 

  56. Valerio M, Rivera S, Mesin L (2020) Relation between lesions and localization of sources of slow biphasic complexes in encephalitis. Neuroimmunol Neuroinflammation

  57. Venkatesan A (2015) Epidemiology and outcomes of acute encephalitis. Curr Opin Neurol 28(3):277–82

    PubMed  Google Scholar 

  58. Vora NM, Holman RC, Mehal JM, Steiner CA, Blanton J, Sejvar J (2014) Burden of encephalitis-associated hospitalizations in the United States, 1998–2010. Neurology 82(5):443–51

    PubMed  Google Scholar 

  59. Weingarten L, Enarson P, Klassen T (2013) Encephalitis. Pediatr Emerg Care 29(2):235–41

    PubMed  Google Scholar 

  60. Zhao C, Zhao M, Yang Y, Gao J, Rao N, Lin P (2017) The reorganization of human brain networks modulated by driving mental fatigue. IEEE J Biomed Health Inform 21(3):743–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mesin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This is a retrospective study conducted on already available data from pediatric patients for which formal consent was obtain from the parents.

Informed consent

As the patients were children, the consent for the examination and data processing was obtained from their parents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesin, L., Valerio, M. & Capizzi, G. Automated diagnosis of encephalitis in pediatric patients using EEG rhythms and slow biphasic complexes. Phys Eng Sci Med 43, 997–1006 (2020). https://doi.org/10.1007/s13246-020-00893-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00893-0

Keywords

Navigation