Skip to main content
Log in

Multi optimized SVM classifiers for motor imagery left and right hand movement identification

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

EEG signal can be a good alternative for disabled persons who cannot perform actions or perform them improperly. Brain computer interface (BCI) is an attractive technology which permits control and interaction with a computer or a machine using EEG signals. Brain task identification based on EEG signals is very difficult task and is still challenging researchers. In this paper, the motor imagery of left and right hand actions are identified using new features which are fed to a set of optimized SVM classifiers. Multi classifiers based classification showed having high faculty to improve the classification accuracy when using different kind or diversified features. Features selection was performed by genetic algorithm optimization. In single optimized SVM classifier, a mean classification accuracy of 89.8% was reached. To further improve the rate of classification, three SVMs classifiers have been suggested and optimized in order to find suitable features for each classifier. The three SVMs classifiers were optimized and achieved a performance mean of 94.11%. The achieved performance is a significant improvement comparing to the existing methods which does not exceed 81% while using the same database. Here, combining multi classifiers with selecting suitable features by optimization can be a good alternative for BCI applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Teplan M (2002) Fundamental of EEG measurement. Meas Sci Rev 2(2):1

    Google Scholar 

  2. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279

    PubMed  Google Scholar 

  3. Sanei S, Chambers JA (2007) EEG signal processing. Wiley, Chichester

    Google Scholar 

  4. The Ten Twenty Electrode System: International Federation of Societies for Electroencephalography and Clinical Neurophysiology. Am J EEG Technol 1961; 1:13–19

  5. Brodu N, Lotte F, Lécuyer A (2011) Comparative study of band-power extraction techniques for motor imagery classification. In: IEEE symposium on computational intelligence, cognitive algorithms, mind, and brain (CCMB), pp 1–6

  6. Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446

    CAS  PubMed  Google Scholar 

  7. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller KR (2008) Optimizing spatial filters for robust EEG single-trial analysis. Signal Process Mag IEEE 25(1):41–56

    Google Scholar 

  8. Ebrahini T, Vesin JM, Garcia G (2003) Brain-computer interface in multimedia communication. IEEE Signal Process Mag 20(1):14–24

    Google Scholar 

  9. Chaudhari R, Galiyawala HJ (2017) A review on motor imagery signal classification for BCI. Signal Process Int J (SPIJ) 11(2):16–34

    Google Scholar 

  10. Abdulkader SN, Atia A, Mostafa MSM (2015) Brain computer interfacing: applications and challenges. Egyptian Inform J 16:213–230

    Google Scholar 

  11. Malouin F, Richards CL (2013) Clinical applications of motor imagery in rehabilitation Multisensory imagery. Springer, New York, pp 397–419

    Google Scholar 

  12. Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain–computer interfaces based on steady-state visual evoked response. IEEE Trans Rehabil Eng 8:211–213

    CAS  PubMed  Google Scholar 

  13. Kundu S, Ari S (2017) P300 detection with brain-computer interface application using PCA and ensemble of weighted SVMs. IETE J Res 64(3):406–414

    Google Scholar 

  14. Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 4(2):32–57

    Google Scholar 

  15. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtschellere G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    PubMed  Google Scholar 

  16. Lotte F, Congedo M, Léecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain computer interfaces. J Neural Eng 4(2):R1–R13

    CAS  PubMed  Google Scholar 

  17. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng 15(3):031005

    CAS  PubMed  Google Scholar 

  18. Pattnaik PK, Sarraf J (2016) Brain computer interface issues on hand movement. J King Saud Univ Comput Inform Sci 30(1):18–24

    Google Scholar 

  19. Coyle D, Prasad G, McGinnity TM (2005) A time-frequency approach to feature extraction for a brain-computer interface with a comparative analysis of performance measures. EURASIP J Appl Signal Process 19:3141–3151

    Google Scholar 

  20. Brodu N, Lotte F, Lécuyer A (2012) Exploring two novel features for EEG-based brain–computer interfaces: multifractal cumulants and predictive complexity. Neurocomputing 79:87–94

    Google Scholar 

  21. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain computer communication. Proc IEEE 89(7):1123–1134

    Google Scholar 

  22. Zhong M, Lotte F, Girolami M, Lécuyer A (2008) Classifying EEG for brain computer interfaces using Gaussian processes. Pattern Recogn Lett 29(3):354–359

    Google Scholar 

  23. Pfurtscheller G, Neuper C, Schlogl A, Lugger K (1998) Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng 6(3):316–325

    CAS  PubMed  Google Scholar 

  24. Bashashati H, Ward RK, Birch GE, Bashashati A (2015) Comparing different classifiers in sensory motor brain computer interfaces. PLoS ONE 10(6):e0129435

    PubMed  PubMed Central  Google Scholar 

  25. Lee H, Choi S (2003) PCA+HMM+SVM for EEG pattern classification. In: Proceedings of the IEEE seventh international symposium on signal processing and its applications, pp 541–544

  26. Lin CJ, Hsieh MH (2009) Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 72(4–6):1121–1130

    Google Scholar 

  27. Wang Y, Jung T-P (2012) Improving brain-computer interfaces using independent component analysis. In: Allison B, Dunne S, Leeb R, Del R, Millán J, Nijholt A (eds) Towards practical brain–computer interfaces, vol 67. Springer, Berlin, p 83

    Google Scholar 

  28. Chiappa S, Barber D (2006) EEG classification using generative independent component analysis. Neurocomputing 69(7–9):769–777

    Google Scholar 

  29. Garrett D, Peterson DA, Anderson CW, Thaut MH (2003) Comparison of linear nonlinear and feature selection methods for EEG signal classification. IEEE Trans Neural Syst Rehabil Eng 11(2):141–144

    PubMed  Google Scholar 

  30. Amarasinghe K, Sivils P, Manic M (2016) EEG feature selection for thought driven robots using evolutionary algorithms. In: 9th IEEE international conference on human system interactions (HSI), pp 355–361

  31. Herman P, Prasad G, McGinnity TM, Coyle D (2008) Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 16(4):317–326

    PubMed  Google Scholar 

  32. Obermaier B, Guger C, Pfurtscheller G (1999) Hidden Markov models used for off line classification of EEG data. Biomed Technik 44(6):158–162

    CAS  Google Scholar 

  33. Cai Y, Zhang L, Wenjuan J, Changsheng L (2015) A hybrid SVM/HMM classification method for motor imagery based BCI. J Comput Inform Syst 11(4):1259–1267

    Google Scholar 

  34. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Google Scholar 

  35. Rakotomamonjy A, Guigue V, Mallet G, Alvarado V (2005) Ensemble of svms for improving brain computer interface p300 speller performances. In: International conference on artificial neural networks, pp 45–50

  36. Lotte F, Lécuyer A, Lamarche F, Arnaldi B (2007) Studying the use of fuzzy inference systems for motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 15(2):322–332

    Google Scholar 

  37. Lemm S, Schafer C, Curio G (2004) BCI competition 2003–data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Trans Biomed Eng 51:1077–1080

    PubMed  Google Scholar 

  38. Ende FM, Louis AK, Maass P, Mayer-Kress G (1998) EEG signal analysis by continuous wavelet transform techniques. In: Kantz H, Kurths J, Mayer-Kress G (eds) nonlinear analysis of physiological data. Springer, Berlin, pp 213–219

    Google Scholar 

  39. Samar VJ, Bopardikar A, Rao R, Swartz K (1999) Wavelet analysis of neuroelectric waveforms: a conceptual tutorial. Brain Lang 66:7–60

    CAS  PubMed  Google Scholar 

  40. Akay M (ed) (1997) Time frequency and wavelets in biomedical signal processing, series in biomedical engineering. IEEE Press, Piscataway

    Google Scholar 

  41. Hsu WY, Sun YN (2009) EEG-based motor imagery analysis using weighted wavelet transform features. J Neurosci Methods 167(2):310–318

    Google Scholar 

  42. Yang BH, Yan GZ, Yan RG, Wu T (2007) Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition. Med Eng Phys 29(1):48–53

    CAS  PubMed  Google Scholar 

  43. Song A, Xu B (2010) Features extraction of motor imagery EEG based on wavelet transform and higher-order statistics. Int J Wavelets Multiresolut Inf Process 8(3):373–384

    Google Scholar 

  44. Xu Q, Zhou H, Wang Y, Huang J (2009) Fuzzy support vector machine for classification of EEG signals using wavelet-based features. Med Eng Phys 31(7):858–865

    PubMed  Google Scholar 

  45. Blankertz B, Müller KR, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schlögl A, Neuper C, Pfurtscheller G, Hinterberger T, Schröder M, Birbaumer N (2004) The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 51(6):1044–1051

    PubMed  Google Scholar 

  46. Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Pfurtscheller G, Millan JDR, Schroder M, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159

    PubMed  Google Scholar 

  47. Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31:277–283

    Google Scholar 

  48. Accardo A, Affinito M, Carrozzi M, Bouquet F (1997) Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cyber 77:339–350

    CAS  Google Scholar 

  49. Vapnik VN (1995) The nature of statistical learning theory. ISBN 0-387-94559-8, Springer-Verlag

  50. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Google Scholar 

  51. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  52. Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169–198

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, for providing the dataset online (https://www.bbci.de/competition/iii).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Mebarkia.

Ethics declarations

Conflict of interest

No conflicts of interest are declared by the authors.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebarkia, K., Reffad, A. Multi optimized SVM classifiers for motor imagery left and right hand movement identification. Australas Phys Eng Sci Med 42, 949–958 (2019). https://doi.org/10.1007/s13246-019-00793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-019-00793-y

Keywords

Navigation