Skip to main content

Advertisement

Log in

A new fast algorithm to achieve the dose uniformity around high dose rate brachytherapy stepping source using Tikhonov regularization

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The dose optimization algorithm based on anatomical points is developed to produce rapidly uniform doses over target distances generated on the target volume edges in high-dose-rate (HDR) brachytherapy stepping source application for a treatment length of 6 cm. Monte Carlo modeling of the 60Co HDR brachytherapy source and the surrounding medium were performed using PHITS code. The source dwell times were optimized using Tikhonov regularization in order to obtain uniform dose distribution at the anatomical points located at predefined target distances. The computed dose rates at distances from 0.25 up to 20 cm away from the source were first verified with the literature data sets. Then, the simulation results of the optimization process were compared to the calculations of commercial treatment planning system (TPS) SagiPlan. As a result, the dose uniformity was observed in the isodose curves at the target distances of 10 and 15 mm of the treatment length and the prescribed dose achieved the anatomical points uniformly. The algorithm developed in the present study can be applied for achieving the dose uniformity around the brachytherapy stepping source as a quicker tool for different treatment lengths and different target distances while maintaining the high quality of the treatment plans, saving time by avoiding the manual isodose shaping and then better suitable treatment for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sadeghi M, Enferadi M, Shirazi A (2010) External and internal radiation therapy: past and future directions. J Cancer Res Ther 6(3):239–248

    Article  CAS  PubMed  Google Scholar 

  2. Yoshimura R, Hayashi K, Ayukawa F, Toda K, Iwata M, Oota S, Hoshi A, Wakatsuki M, Kurosaki H, Okazaki A, Shibuya H (2008) Radiotherapy doses at special reference points correlate with the outcome of cervical cancer therapy. Brachytherapy 7:260–266

    Article  PubMed  Google Scholar 

  3. Sarabiasl A, Ayoobian N, Poorbaygi H et al (2016) Erratum to: Monte Carlo dosimetry of the IRAsource high dose rate 192Ir brachytherapy source. Australas Phys Eng Sci Med 39:591. https://doi.org/10.1007/s13246-016-0444-z

    Article  PubMed  Google Scholar 

  4. Hirose K, Aoki M, Sato M et al (2016) Jpn J Radiol 34(11):718–723. https://doi.org/10.1007/s11604-016-0578-7

    Article  CAS  PubMed  Google Scholar 

  5. Janulionis E, Samerdokiene V, Valuckas KP, Atkocius V, Rivard MJ (2018) Second primary malignancies after high-dose-rate 60Co photon or 252Cf neutron brachytherapy in conjunction with external-beam radiotherapy for endometrial cancer. Brachytherapy 17:768–774

    Article  PubMed  Google Scholar 

  6. Skowronek J (2017) Current status of brachytherapy in cancer treatment—short overview. J Contemp Brachyther 9:581–589

    Article  Google Scholar 

  7. Choi CH, Ye SJ, Parsai EI, Shen S, Meredith R, Brezovich IA, Ove R (2009) Dose optimization of breast balloon brachytherapy using a stepping 192Ir HDR source. J Appl Clin Med Phys 10(1):90–102

    Article  PubMed Central  Google Scholar 

  8. Patel NP, Majumdar B, Hota PK et al (2005) Dose uniformity assessment of intraluminal brachytherapy using HDR 192Ir stepping source. J Can Res Ther 1(2):84–91

    Article  Google Scholar 

  9. Morén B, Larsson T, Tedgren ÅC (2018) Mathematical optimization of high dose-rate brachytherapy—derivation of a linear penalty model from a dose-volume model. Phys Med Biol 63(5):065011. https://doi.org/10.1088/1361-6560/aaab83

    Article  PubMed  Google Scholar 

  10. Lahanas M, Baltas D, Zamboglou N (1999) Anatomy-based three-dimensional dose optimization in brachytherapy using multiobjective genetic algorithms. Med Phys 26:1904–1918

    Article  CAS  PubMed  Google Scholar 

  11. Giantsoudi D, Baltas D, Karabis A, Mavroidis P, Zamboglou N, Tselis N, Shi C, Papanikolaou N (2013) A gEUD-based inverse planning technique for HDR prostate brachytherapy: feasibility study. Med Phys 40:041704

    Article  CAS  PubMed  Google Scholar 

  12. Holm Å, Larsson T, Carlsson Tedgren Å (2013) A linear programming model for optimizing HDR brachytherapy dose distributions with respect to mean dose in the DVH-tail. Med Phys 40:081705

    Article  PubMed  Google Scholar 

  13. De Boeck L, Beliën J, Egyed W (1990) Dose optimization in high-dose-rate brachytherapy: a literature review of quantitative models from 1990 to 2010. Oper Res Health Care. 2014(3):80–90

    Google Scholar 

  14. Alber M, Birkner M, Laub W, Nüsslin F (2000) Hyperion—an integrated IMRT planning tool. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy. Springer, Berlin. https://doi.org/10.1007/978-3-642-59758-9_17

    Chapter  Google Scholar 

  15. Chui C-S, Spirou SV (2001) Inverse planning algorithms for external beam radiation therapy. Med Dosim 26(2):189–197

    Article  CAS  PubMed  Google Scholar 

  16. Chvetsov A (2005) SU-FF-T-108: computing the regularization parameter for inverse treatment planning using the L-curve method. Med Phys 32:1974–1974. https://doi.org/10.1118/1.1997779

    Article  Google Scholar 

  17. Badry H, Oufni L, Ouabi H, Hirayama H (2018) A Monte Carlo investigation of the dose distribution for 60Co high dose rate brachytherapy source in water and in different media. Appl Radiat Isot 136:104–110

    Article  CAS  PubMed  Google Scholar 

  18. Sato Sato T et al (2018) Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. https://doi.org/10.1080/00223131.2017.1419890

    Article  Google Scholar 

  19. Puchalska M, Sihver L, Sato T, Berger T, Reitz G (2012) Simulations of MATROSHKA experiment at ISS using PHITS. Adv Space Res 50:489–495

    Article  Google Scholar 

  20. Sato T, Kase Y, Watanabe R, Niita K, Sihver L (2009) Biological dose estimation for heavy ion therapy using an improved PHITS code coupled with the microdosimetric kinetic model. Radiat Res 171:107–117

    Article  CAS  PubMed  Google Scholar 

  21. Ohta M, Nakao N, Kuribayashi S, Hayashizaki N (2018) Verification of evaluation accuracy of absorbed dose in the dose-evaluation system for iridium-192 brachytherapy for treatment of keloids. Biomed Phys. Eng Express 4:025022

    Article  Google Scholar 

  22. Badry H, Oufni L, Ouabi H, Hirayama H (2018) Monte Carlo dose calculation for HDR brachytherapy source using EGS5 code. Radiat Phys Chem 150:76–81

    Article  CAS  Google Scholar 

  23. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, Mitch MG, Nath R, Williamson JF (2004) Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 31:633–674

    Article  PubMed  Google Scholar 

  24. Bertaccini D, Chan RH, Morigi S, Sgallari F (2012) An adaptive norm algorithm for image restoration. In: Bruckstein AM, ter Haar Romeny BM, Bronstein AM, Bronstein MM (eds) Scale space and variational methods in computer vision. SSVM 2011. Lecture notes in computer science. Springer, Berlin

    Google Scholar 

  25. Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl. 4:1035–1038; English translation of Dokl Akad Nauk. SSSR, 151(1963) pp 501–504

  26. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Halsted Press, Washington/New York

    Google Scholar 

  27. Gfrerer H (1987) An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergences rates. Math Comput 49:507–522

    Article  Google Scholar 

  28. Liu Y, Zhang C, Li W et al (2018) An adaptive multiscale anisotropic diffusion regularized image reconstruction method for digital breast tomosynthesis. Australas Phys Eng Sci Med 41:993. https://doi.org/10.1007/s13246-018-0700-5

    Article  PubMed  Google Scholar 

  29. Golub GH, Heath MT, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223

    Article  Google Scholar 

  30. Hansen PC, O’Leary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14:1487–1503

    Article  Google Scholar 

  31. Hansen PC (2001) The L-curve and its use in the numerical treatment of inverse problems; invited chapter. In: Johnston P (ed) Computational inverse problems in electrocardiology. WIT Press, Southampton, pp 119–142

    Google Scholar 

  32. Gunawan FE, Homma H (2004) Efficient iterative solution for large elasto-dynamic. Inverse problems. JSME Int J 24:130–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Oufni.

Ethics declarations

Funding

No specific funding was disclosed.

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badry, H., Oufni, L., Ouabi, H. et al. A new fast algorithm to achieve the dose uniformity around high dose rate brachytherapy stepping source using Tikhonov regularization. Australas Phys Eng Sci Med 42, 757–769 (2019). https://doi.org/10.1007/s13246-019-00775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-019-00775-0

Keywords

Navigation