Skip to main content
Log in

Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Spectral computed tomography (CT) is an up and coming imaging modality which shows great promise in revealing unique diagnostic information. Because this imaging modality is based on X-ray CT, it is of utmost importance to study the radiation dose aspects of its use. This study reports on the implementation and evaluation of a Monte Carlo simulation tool using TOPAS for estimating dose in a pre-clinical spectral CT scanner known as the MARS scanner. Simulated estimates were compared with measurements from an ionization chamber. For a typical MARS scan, TOPAS estimated for a 30 mm diameter cylindrical phantom a CT dose index (CTDI) of 29.7 mGy; CTDI was measured by ion chamber to within 3% of TOPAS estimates. Although further development is required, our investigation of TOPAS for estimating MARS scan dosimetry has shown its potential for further study of spectral scanning protocols and dose to scanned objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ballabriga R, Alozy J, Cambell M, Frojdh E, Heijne E, Koenig T, Llopart X, Marchal J, Pennicard D, Poikela T (2016) Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. J Instrum 11:P01007

    Article  Google Scholar 

  2. Yu H, Xu Q, He P, Bennett J, Aamir R, Dobbs B, Mou X, Wei B, Butler A, Butler P, Wang G (2012) Medipix-based Spectral Micro-CT. CT Li lun yu ying yong yan jiu 21(4):583

    PubMed  PubMed Central  Google Scholar 

  3. Schioppa E, Visser J, Koffeman E (2014) Prospects for spectral CT with Medipix detectors.In: Technology and Instrumentation in Particle Physics 2014, Amsterdam

  4. Walsh MF, Nik SJ, Procz S, Pichotka M, De Ruiter N, Chernoglazov AI, RMN. Doesburg, Panta RK, Bell ST, Bateman CJ (2013) Spectral CT data acquisition with Medipix3.1. J Instrum 8:P10012

    Article  Google Scholar 

  5. Anderson NG, Butler AP (2014) Clinical applications of spectral molecular imaging: potential and challenges. Contrast Medial Mol Imaging 9:3–12

    Article  CAS  Google Scholar 

  6. Brenner DJ, Hall EJ (2007) Computed Tomography: an increasing source of radiation exposure. N Engl J Med 357(22):2277–2286

    Article  CAS  PubMed  Google Scholar 

  7. Smith-Bindman R (2010) Is Computed Tomography Safe? New Eng J Med 263:1–4

    Article  Google Scholar 

  8. International Commission on Radiological Protection (2007) ICRP Publication 103: 2007 Recommendations of the ICRP Elsevier, Amsterdam

    Google Scholar 

  9. International Atomic Energy Agency, Wold Health Organisation (2012) Bonn Call for Action In: International conference on radiation protection in medicine: setting the scene for the next decade, IAEA, Bonn

    Google Scholar 

  10. Perl J, Shin J, Schumann J, Faddegon B, Paganetti H (2012) TOPAS: An innovative proton Monte Carlo platform for research and clinical applications. Med Phys 39(11):6818–6837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H (2003) GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res 506(3):250–303

    Article  CAS  Google Scholar 

  12. RaySafe, RaySafe Xi Specifications [Online]. http://mediabank.raysafe.com/A/RaySafe+Media+Bank/1599?encoding=UTF-8. Accessed 4 Dec 2015

  13. Ganet N (2015) Dosimetry for spectral molecular imaging of small animals with MARS-CT. In: SPIE. International Society for Optics and Photonics, Orlando

    Google Scholar 

  14. Podgorsak EB (2005) Radiation Oncology Physics: A handbook for teachers and students. International Atomic Energy Agency, Vienna

    Google Scholar 

  15. Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, Seuntjens JP (2001) AAPM protocol for 40-300kV X-ray beam. Med Phys 26(6):868–893

    Article  Google Scholar 

  16. Poludniowski GG, Evans PM (2007) Calculation of X-ray spectra emerging from an X-ray tube. Part I. electron penetration characteristics in X-ray targets. Med Phys 34(6):2164–2174

    Article  CAS  PubMed  Google Scholar 

  17. Manez R (2012) Model SB-120-350 (Doc. M-SB120350, Rev 3) Installation/Operation Manual. Source-Ray, Inc., Ronkonkoma

    Google Scholar 

Download references

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gray Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Marsh, S., Damet, J. et al. Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements. Australas Phys Eng Sci Med 40, 297–303 (2017). https://doi.org/10.1007/s13246-017-0532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-017-0532-8

Keywords

Navigation