Skip to main content

Advertisement

Log in

Multi-atlas and unsupervised learning approach to perirectal space segmentation in CT images

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Perirectal space segmentation in computed tomography images aids in quantifying radiation dose received by healthy tissues and toxicity during the course of radiation therapy treatment of the prostate. Radiation dose normalised by tissue volume facilitates predicting outcomes or possible harmful side effects of radiation therapy treatment. Manual segmentation of the perirectal space is time consuming and challenging in the presence of inter-patient anatomical variability and may suffer from inter- and intra-observer variabilities. However automatic or semi-automatic segmentation of the perirectal space in CT images is a challenging task due to inter patient anatomical variability, contrast variability and imaging artifacts. In the model presented here, a volume of interest is obtained in a multi-atlas based segmentation approach. Un-supervised learning in the volume of interest with a Gaussian-mixture-modeling based clustering approach is adopted to achieve a soft segmentation of the perirectal space. Probabilities from soft clustering are further refined by rigid registration of the multi-atlas mask in a probabilistic domain. A maximum a posteriori approach is adopted to achieve a binary segmentation from the refined probabilities. A mean volume similarity value of 97% and a mean surface difference of 3.06 ± 0.51 mm is achieved in a leave-one-patient-out validation framework with a subset of a clinical trial dataset. Qualitative results show a good approximation of the perirectal space volume compared to the ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO (2010) Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys 76(3, Supplement 1):S123–S129

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smeenk RJ, Hoffmann AL, Hopman WP, van Lin EN, Kaanders JH (2012) Dose-effect relationships for individual pelvic floor muscles and anorectal complaints after prostate radiotherapy. Int J Radiat Oncol Biol Phys 83(2):636–644. doi:10.1016/j.ijrobp.2011.08.007

    Article  PubMed  Google Scholar 

  3. Gaballah AH, Shaaban AM, Elguindy YM, Elsayes KM (2015) The extraperitoneal spaces. In: Elsayes KM (ed) Cross-sectional imaging of the abdomen and pelvis: a practical algorithmic approach. Springer, New York

    Google Scholar 

  4. Ghose S, Denham J, Ebert M, Kennedy A, Mitra J, Rose S, Dowling J (2013) Multi-atlas and gaussian mixture modeling based perirectal fat segmentation from CT images. In: Yoshida H, Warfield S, Vannier M (eds) Abdominal imaging. Computation and clinical applications. Lecture notes in computer science, vol 8198. Springer, Berlin, pp 194–202. doi:10.1007/978-3-642-41083-3_22

    Chapter  Google Scholar 

  5. Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA (2013) Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35(3):611–623. doi:10.1109/tpami.2012.143

    Article  PubMed  Google Scholar 

  6. Isgum I, Staring M, Rutten A, Prokop M, Viergever MA, Bv Ginneken (2009) Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging 28(7):1000–1010. doi:10.1109/TMI.2008.2011480

    Article  PubMed  Google Scholar 

  7. Klein S, van der Heide UA, Lips IM, van Vulpen M, Staring M, Pluim JP (2008) Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys 35(4):1407–1417. doi:10.1118/1.2842076

    Article  PubMed  Google Scholar 

  8. Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32(1):71–86. doi:10.1016/S0031-3203(98)00091-0

    Article  Google Scholar 

  9. Chandra SS, Dowling JA, Shen KK, Raniga P, Pluim JP, Greer PB, Salvado O, Fripp J (2012) Patient specific prostate segmentation in 3-d magnetic resonance images. IEEE Trans Med Imaging 31(10):1955–1964. doi:10.1109/tmi.2012.2211377

    Article  PubMed  Google Scholar 

  10. Zaim A (2005) Automatic segmentation of the prostate from ultrasound data using feature-based self organizing map. In: Kalviainen H, Parkkinen J, Kaarna A (eds) Image analysis. Springer, Berlin, pp 1259–1265. doi:10.1007/11499145_127

    Chapter  Google Scholar 

  11. Li W, Liao S, Feng Q, Chen W, Shen D (2011) Learning image context for segmentation of prostate in CT-guided radiotherapy. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention—MICCAI 2011. Springer, Berlin, pp 570–578. doi:10.1007/978-3-642-23626-6_70

    Chapter  Google Scholar 

  12. Liao S, Shen D (2011) A learning based hierarchical framework for automatic prostate localization in CT images. In: Madabhushi A, Dowling J, Huisman H, Barratt D (eds) Prostate cancer imaging. Image analysis and image-guided interventions. Springer, Berlin, pp 1–9. doi:10.1007/978-3-642-23944-1_1

    Chapter  Google Scholar 

  13. Tutar IB, Pathak SD, Gong L, Cho PS, Wallner K, Kim Y (2006) Semiautomatic 3-D prostate segmentation from TRUS images using spherical harmonics. IEEE Trans Med Imag 25(12):1645–1654. doi:10.1109/TMI.2006.884630

    Article  Google Scholar 

  14. Yiqiang Z, Dinggang S (2006) Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method. IEEE Trans Med Imag 25(3):256–272. doi:10.1109/TMI.2005.862744

    Article  Google Scholar 

  15. Cosio FA (2008) Automatic initialization of an active shape model of the prostate. Med Image Anal 12(4):469–483. doi:10.1016/j.media.2008.02.001

    Article  PubMed  Google Scholar 

  16. Yan P, Xu S, Turkbey B, Kruecker J (2010) Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Trans Biomed Eng 57(5):1158–1166. doi:10.1109/tbme.2009.2037491

    Article  PubMed  Google Scholar 

  17. Makni N, Puech P, Lopes R, Dewalle AS, Colot O, Betrouni N (2008) Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI. Int J Comput Assist Radiol Surg 4(2):181–188. doi:10.1007/s11548-008-0281-y

    Article  PubMed  Google Scholar 

  18. Martin S, Troccaz J, Daanenc V (2010) Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med Phys 37(4):1579–1590. doi:10.1118/1.3315367

    Article  PubMed  Google Scholar 

  19. Gao Y, Sandhu R, Fichtinger G, Tannenbaum AR (2010) A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery. IEEE Trans Med Imag 29(10):1781–1794. doi:10.1109/TMI.2010.2052065

    Article  Google Scholar 

  20. Toth R, Bloch BN, Genega EM, Rofsky NM, Lenkinski RE, Rosen MA, Kalyanpur A, Pungavkar S, Madabhushi A (2011) Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI. Acad Radiol 18(6):745–754. doi:10.1016/j.acra.2011.01.016

    Article  PubMed  Google Scholar 

  21. Song Q, Wu X, Liu Y, Smith M, Buatti J, Sonka M (2009) Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate. Med Image Comput Comput Assist Interv 12(Pt 2):827–835

    PubMed  Google Scholar 

  22. Chen S, Lovelock DM, Radke RJ (2011) Segmenting the prostate and rectum in CT imagery using anatomical constraints. Med Image Anal 15(1):1–11. doi:10.1016/j.media.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  23. Toth R, Madabhushi A (2012) Multifeature landmark-free active appearance models: application to prostate MRI segmentation. IEEE Trans Med Imag 31(8):1638–1650. doi:10.1109/TMI.2012.2201498

    Article  Google Scholar 

  24. Chowdhury N, Toth R, Chappelow J, Kim S, Motwani S, Punekar S, Lin H, Both S, Vapiwala N, Hahn S, Madabhushi A (2012) Concurrent segmentation of the prostate on MRI and CT via linked statistical shape models for radiotherapy planning. Med Phys 39(4):2214–2228. doi:10.1118/1.3696376

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhan Y, Shen D (2003) Automated segmentation of 3D US prostate images using statistical texture-based matching method. Medical image computing and computer-assisted intervention—MICCAI 2003. Springer, Berlin, p 688. doi:10.1007/978-3-540-39899-8_84

    Chapter  Google Scholar 

  26. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8):712–721. doi:10.1109/42.796284

    Article  CAS  PubMed  Google Scholar 

  27. Ourselin S, Roche A, Subsol G, Pennec X, Ayache N (2001) Reconstructing a 3D structure from serial histological sections. Image Vis Comput 19(1–2):25–31. doi:10.1016/S0262-8856(00)00052-4

    Article  Google Scholar 

  28. Dempster AP, Laird NM, Rubin DP (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    Google Scholar 

  29. Denham JW, Wilcox C, Joseph D, Spry NA, Lamb DS, Tai KH, Matthews J, Atkinson C, Turner S, Christie D, Gogna NK, Kenny L, Duchesne G, Delahunt B, McElduff P (2012) Quality of life in men with locally advanced prostate cancer treated with leuprorelin and radiotherapy with or without zoledronic acid (TROG 03.04 RADAR): secondary endpoints from a randomised phase 3 factorial trial. Lancet Oncol 13(12):1260–1270. doi:10.1016/s1470-2045(12)70423-0

    Article  CAS  PubMed  Google Scholar 

  30. Dowling J (2013) Importing contours from DICOM-RT structure sets with ITK4. http://hdl.handle.net/10380/3401. Accessed 22 Jan 2014

  31. Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann Math Stat 23(2):193–212. doi:10.1214/aoms/1177729437

    Article  Google Scholar 

  32. Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Academic Press, Burlington

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Australian National Health and Medical Research Council (Grant Nos 1006447 and 1077788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Ebert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghose, S., Denham, J.W., Ebert, M.A. et al. Multi-atlas and unsupervised learning approach to perirectal space segmentation in CT images. Australas Phys Eng Sci Med 39, 933–941 (2016). https://doi.org/10.1007/s13246-016-0496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0496-0

Keywords

Navigation