Skip to main content
Log in

Evaluating the effect of various intracavitary applicators on dosimetric parameters of 192Ir, 137Cs, and 60Co sources

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this research is to study the effect of various applicator compositions on dosimetric parameters and dose distribution of 192Ir, 137Cs, and 60Co sources, using Monte Carlo simulation techniques. To study the effect of applicators on source dosimetry, the dose rate constant, and radial dose function and isodose curves for the above noted sources were calculated in the presence and absence of plastic, titanium, and a stainless steel applicators. The effects of the applicators on the dosimetric parameters and isodose curves of these sources were dependent of the source type and materials of the applicator. The 192Ir source with the stainless steel applicator has the maximum difference of dose rate (4.2 %) relative to the without applicator case. The 60Co source with plastic applicator has the minimum dose variation. Moreover, this effect is higher for lower energy sources. Ignoring the effect of applicator composition and geometry on dose distribution may cause discrepancies in treatment planning. Plastic applicators have the least radiation attenuation compared to the other applicators, therefore, they are recommended for use in brachytherapy. A table of correction factors has been introduced for different sources and applicators with different materials for the clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Papagiannis P, Baltas D, Granero D, Pérez-Calatayud J, Gimeno J, Ballester F et al (2008) Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding. Med Phys 35(11):4898–4906

    Article  CAS  PubMed  Google Scholar 

  2. Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W et al (2010) SEER cancer statistics review SEER cancer statistics review, 1975–2007. National Cancer Institute, Bethesda. http://seer.cancer.gov/csr/1975_2007. Accessed 17 Jan 2016

  3. Wu CH, Shiau AC, Liao YJ, Lin HY, Liu YW, Hsu SM et al (2014) Influence of metal of the applicator on the dose distribution during brachytherapy. PLoS One 9(8):1–7

    Google Scholar 

  4. Kirisits C, Lang S, Dimopoulos J, Berger D, Georg D, Pötter R (2006) The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys 65(2):624–630

    Article  PubMed  Google Scholar 

  5. Hu Y, Esthappan J, Mutic S, Richardson S, Gay HA, Schwarz JK et al (2013) Improve definition of titanium tandems in MR-guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI. Radiat Oncol 8(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  6. Haack S, Nielsen SK, Lindegaard JC, Gelineck J, Tanderup K (2009) Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother Oncol 91(2):187–193

    Article  PubMed  Google Scholar 

  7. Wills R, Lowe G, Inchley D, Anderson C, Beenstock V, Hoskin P (2010) Applicator reconstruction for HDR cervix treatment planning using images from 0.35 T open MR scanner. Radiother Oncol 94(3):346–352

    Article  PubMed  Google Scholar 

  8. Kim Y, Muruganandham M, Modrick JM, Bayouth JE (2011) Evaluation of artifacts and distortions of titanium applicators on 3.0-Tesla MRI: feasibility of titanium applicators in MRI-guided brachytherapy for gynecological cancer. Int J Radiat Oncol Biol Phys 80(3):947–955

    Article  PubMed  Google Scholar 

  9. Williamson JF (1990) Dose calculations about shielded gynecological colpostats. Int J Radiat Oncol Biol Phys 19(1):167–178

    Article  CAS  PubMed  Google Scholar 

  10. Kim JS, Lee YS, Lim YK, Park SY, Kim JY (2010) Reconstruction of a fletcher-type applicator with a CT/MR compatible catheter using MR imaging for cervical cancer brachytherapy. J Korean Phys Soc 56(3):880–886

    Article  CAS  Google Scholar 

  11. Yu PC, Chao TC, Lee CC, Wu CJ, Tung CJ (2010) A Monte Carlo dosimetry study using Henschke applicator for cervical brachytherapy. Nucl Instrum Meth A 619(1):411–414

    Article  CAS  Google Scholar 

  12. Sina S, Faghihi R, Meigooni A, Mehdizadeh S, Zehtabian M, Mosleh Shirazi MA (2009) Simulation of the shielding effects of an applicator on the AAPM TG-43 parameters of CS-137 Selectron LDR Brachytherapy sources. Iran J Radiat Res 7(3):135–140

    Google Scholar 

  13. Ye SJ, Brezovich IA, Shen S, Duan J, Popple RA, Pareek PN (2004) Attenuation of intracavitary applicators in 192Ir-HDR brachytherapy. Med Phys 31(7):2097–2106

    Article  CAS  PubMed  Google Scholar 

  14. Sina S, Faghihi R, Soleimani Meigooni A, Siavashpour Z, Mosleh Shirazi MA (2013) Developing a treatment planing software based on TG-43U1 formalism for Cs-137 brachytherapy. Iran Red Crescent Med J 15(8):712–717

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gaudreault M, Reniers B, Landry G, Verhaegen F, Beaulie L (2014) Dose perturbation due to catheter materials in high-dose-rate interstitial 192Ir brachytherapy. Brachytherapy 13(6):627–631

    Article  PubMed  Google Scholar 

  16. Kim SM, Kim MH (2014) A study on MCNPX-CINDER90 system for activation analysis. 2014 Fall Meeting of the Korean Nuclear Society, Pyeongchang, Republic of Korea. 29–31 Oct 2014

  17. Nuclear Energy Agency. http://www.oecd-nea.org/tools/abstract/detail/ccc-0746. Accessed 17 Jan 2016

  18. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS et al (2004) Update of AAPM task group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674

    Article  PubMed  Google Scholar 

  19. Mathews B, Price M (2011) SU-E-T-379: development of a Monte Carlo based correction strategy for a TG-43 based brachytherapy treatment planning system to account for applicator inhomogeneities. Med Phys 38(6):3575

    Article  Google Scholar 

  20. Chandola R, Tiwari S, Kowar M, Choudhary V (2010) Effect of inhomogeneities and source position on dose distribution of nucletron high dose rate Ir-192 Brachytherapy source by Monte Carlo simulation. J Cancer Res Ther 6(1):54–57

    Article  CAS  PubMed  Google Scholar 

  21. López JF, Donaire JT, Alcalde RG (2011) Monte Carlo dosimetry of the most commonly used 192Ir high dose rate brachytherapy sources. Rev Fis Med 12(3):159–168

    Google Scholar 

  22. Vijande J, Granero D, Perez Calatayud J, Ballester F (2012) Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source. J Contemp Brachyther 4(1):34–44

    Article  Google Scholar 

  23. Medich DC, Munro J (2007) Monte Carlo characterization of the M-19 high dose rate Iridium-192 brachytherapy source. Med Phys 34(6):1999–2006

    Article  PubMed  Google Scholar 

  24. Perez Calatayud J, Ballester F, Das RK, DeWerd LA, Ibbott GS, Meigooni AS et al (2012) Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO. Med Phys 39(5):2904–2929

    Article  PubMed  Google Scholar 

  25. Otal A, Martínez-Fernández JM, Granero D (2011) Revision of the dosimetric parameters of the CSM11 LDR Cs-137 source. J Contemp Brachyther 3(1):36–39

    Article  Google Scholar 

  26. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med Phys 22(2):209–234

    Article  CAS  PubMed  Google Scholar 

  27. National Institute of Standards and Technology. http://physics.nist.Gov/PhysRefData/XrayMassCoef/ComTab/water.html. Accessed 17 Jan 2016

  28. Nucletron, Fletcher CT/MR applicator set 189.730, Fletcher CT/MR applicator set XS 110.216 user manual. Doc. No. 090.713ENG-06

  29. Soni N (2012) Quantitative assessment of the source attenuation for the new CT compatible titanium Fletcher-Suit-Delclos (FSD) gynecologic applicator. M Sc thesis on Medical Physics, University of Toledo. http://etd.Ohiolink.Edu/ap/10?0::NO:10:P10_ACCESSION_NUM:mco1353080695. Accessed 17 Jan 2016

  30. Aestrospace Specification Metals Inc. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ316A.Accessed. Accessed 17 Jan 2016

  31. Selvam TP, Sahoo S, Vishwakarma RS (2009) EGSnrc-based Monte Carlo dosimetry of CSA1 and CSA2 137Cs brachytherapy source models. Med Phys 36(9):3870–3879

    Article  CAS  PubMed  Google Scholar 

  32. NIST.Guidelines for evaluating and expressing the uncertainty of NIST measurement results (1994). http://physics.nist.gov/Pubs/guidelines/contents.html. Accessed 17 Jan 2016

  33. Pelowitz DB (2008). MCNPX user’s manual, LA-CP-07-1473, Version 2.6.0. Los Alamos National Laboratory

  34. National Institute of Standards and Technology. http://physics.nist.Gov/PhysRefData/XrayMassCoef/ComTab/a150.html. Accessed 17 Jan 2016

  35. National Institute of Standards and Technology. http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z22.html. Accessed 17 Jan 2016

  36. National Institute of Standards and Technology. http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z26.html. Accessed 17 Jan 2016

  37. National Institute of Standards and Technology. http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab.html. Accessed 17 Jan 2016

  38. Ahmadi Moghaddas T, Ghorbani M, Haghparast A, Flynn RT, Eivazi MT (2014) Monte Carlo study on dose enhancement effect of various paramagnetic nanoshells in Brachytherapy. J Med Biol Eng 34(6):559–567

    Google Scholar 

  39. Ghorbani M, Behmadi M (2016) Evaluation of hypothetical 153Gd source for use in brachytherapy. Rep Pract Oncol Radiother 21(1):17–24

    Article  PubMed  Google Scholar 

  40. Beaulieu L, Carlsson Tedqren A, Carrier JF, Davis SD, Mourtada F, Rivard MJ et al (2012) Report of the task group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys 39(10):6208–6236

    Article  PubMed  Google Scholar 

  41. White SA, Landry G, Fonseca GP, Holt R, Rusch T, Beaulieu L et al (2014) See comment in PubMed Commons below Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source. Med Phys 41(6):6208–6236

    Google Scholar 

  42. ICRU report No. 24 (1976) Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. International Commission on Radiation Units and Measurements (ICRU), Washington

Download references

Acknowledgments

The authors would like to thank Nucletron Company for providing the useful information on the geometry of the plastic applicator. We are also grateful for the financial support provided by Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Hashempour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, M., Hashempour, M., Azizi, M. et al. Evaluating the effect of various intracavitary applicators on dosimetric parameters of 192Ir, 137Cs, and 60Co sources. Australas Phys Eng Sci Med 39, 477–491 (2016). https://doi.org/10.1007/s13246-016-0441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0441-2

Keywords

Navigation