Skip to main content
Log in

Raystation Monte Carlo application: evaluation of electron calculations with entry obliquity

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

To evaluate the accuracy of Raystation’s implementation for Monte Carlo VMC ++ with electrons at varying angles of incidence for low and medium energy electron beams. Thirty-two profile and percentage depth dose scans were taken at 5° incident angle intervals for 6 and 12 MeV and compared to extracted fluences from Raystation calculations using gamma analysis with 2 %/2 mm criteria. Point dose measurements were compared to calculated doses to determine output accuracy. Electron profile and percentage depth dose curves for both energies show good agreement between 0° and 20° with 29/30 scans above 90 % pass rate. Average variation between calculated and measured point doses was −0.73 % with all measurements falling within ±2 % of calculated dose. Raystation’s application of VMC ++ Monte Carlo algorithm provides clinically acceptable accuracy for low and medium energy electron dosimetry at incident angles up to 20° for Varian Clinac iX models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khan FM (2003) The physics of radiation therapy, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Neuenschwander H, Mackie TR, Reckwerdt PJ (1995) MMC–a high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40(4):543–574

    Article  CAS  PubMed  Google Scholar 

  3. Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23(4):445–457

    Article  CAS  PubMed  Google Scholar 

  4. Kawrakow I (2001) “VMC ++, Electron and photon Monte Carlo calculations optimized for radiation treatment planning. Adv Monte Carlo Radiat Phys Part Transp Simul Appl, p. 229

  5. Edimo P, Clermont C, Kwato MG, Vynckier S (2009) Evaluation of a commercial VMC ++ Monte Carlo based treatment planning system for electron beams using EGSnrc/BEAMnrc simulations and measurements. Phys Med 25(3):111

    Article  CAS  PubMed  Google Scholar 

  6. Raysearch laboratories, Raystation 4.5 Reference Manual, RSL-D-61st–218th ed. Stockholm, Sweden: Raysearch Laboratories

  7. Wang Y, Park Y-K, Doppke KP (2015) SU-E-T-219: comprehensive validation of the electron Monte Carlo dose calculation algorithm in RayStation treatment planning system for an elekta linear accelerator with AGILITYTM treatment head. Med Phys 42(6):3382

    Article  Google Scholar 

  8. Mzenda B, Mugabe KV, Sims R, Godwin G, Loria D (2014) Modeling and dosimetric performance evaluation of the RayStation treatment planning system. J Appl Med Phys 15(5):12–23

    Google Scholar 

  9. Sansourekidou P, Allen C (2015) SU-E-T-405: evaluation of the Raystation electron Monte Carlo algorithm for varian linear accelerators. Med Phys 42(6):3427

    Article  Google Scholar 

  10. Bieda MR, Antolak JA, Hogstrom KR (2001) The effect of scattering foil parameters on electon-beam Monte Carlo calculations. Med Phys. 28:2257–2534

    Article  Google Scholar 

  11. Sheikh-Bagheri D, Rogers DWO (2002) Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters. Med Phys 29:379–390

    Article  PubMed  Google Scholar 

  12. Tzedakis A, Damilakis JE, Mazonakis M, Stratakis J, Varveris H, Gourtsoyiannis N (2004) Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams. Med Phys 31:907–913

    Article  PubMed  Google Scholar 

  13. Ma C-M, Mok E, Kapur A, Pawlicki T, Findley D, Brain S, Forster K, Boyer AL (1999) Clinical Implementation of a Monte Carlo treatment planning system. Med Phys 26:2133–2143

    Article  CAS  PubMed  Google Scholar 

  14. Cygler J, Battista JJ, Scrimger JW, Mah E, Antolak J (2007) Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculations. Phys Med Biol 32:208–217

    Google Scholar 

  15. Kadri O, Ivanchenko V, Gharbi F, Trabelsi A (2009) Incorporation of the Goudsmit–Saunderson electron transport theory in the Geant4 Monte Carlo code. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 267(23–24):3624–3632

  16. Goudsmit S, Saunderson JL (1940) Multiple scattering of electrons. Phys Rev 57(1):24–29

    Article  Google Scholar 

  17. Feller W (1967) An introduction to probability theory and its applications, vol 1, 3rd edn. Wiley, New York

    Google Scholar 

  18. Rogers DWO, Mohan R (2000) Questions for comparisons of clinical Monte Carlo codes. In: Bortfeld T, Schlegel W (eds) Proceedings of the 13th ICCR. Springer-Verlag, Heidelberg

  19. Hubbell JH (1999) Review of photon interaction cross section data in the medical and biological context. Phys Med Biol 44:R1–R22

    Article  CAS  PubMed  Google Scholar 

  20. Siebers JV, Keall PJ, Nahum AE, Mohan R (2000) Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol 45:983–995

    Article  CAS  PubMed  Google Scholar 

  21. Chetty IJ et al (2007) Report of the AAPM Task group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853

    Article  PubMed  Google Scholar 

  22. Laub Wolfram U, Crilly Richard (2014) Clinical radiation therapy measurements with a new commercial synthetic single crystal diamond detector. J Appl Clin Med Phys 15(6):23–66

    Google Scholar 

  23. Venanzio CD, Marinelli M, Milani E, Prestopino G, Verona C, Verona-Rinati G, Falco MD, Bagalà P, Santoni R, Pimpinella M (2013) Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry. Med Phys 40(2):021712

    Article  PubMed  Google Scholar 

  24. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J (1998) American association of physicists in medicine radiation therapy committee task group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 25(10):12–65

    Article  Google Scholar 

  25. Morales J, ScanDoseMatch, QXRay Consulting, V1.1.13.2, Online source: http://www.qxrayconsulting.com/sdm/index.html, Accessed Apr 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Archibald-Heeren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archibald-Heeren, B., Liu, G. Raystation Monte Carlo application: evaluation of electron calculations with entry obliquity. Australas Phys Eng Sci Med 39, 441–452 (2016). https://doi.org/10.1007/s13246-016-0437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0437-y

Keywords

Navigation