Skip to main content
Log in

A novel ultrasound based approach for lesion segmentation and its applications in gynecological laparoscopic surgery

  • Special Issue Article
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Laparoscopic ultrasound (LUS) has been widely utilized as a surgical aide in general, urological, and gynecological applications. Our study summarizes the clinical applications of laparoscopic ultrasonography in laparoscopic gynecologic surgery. Retrospective analyses were performed on 42 women subjects using laparoscopic surgery during laparoscopic extirpation and excision of gynecological tumors in our hospital from August 2011 to August 2013. Specifically, the Esaote 7.5 × 10 MHz laparoscopic transducer was used to detect small residual lesions, as well as to assess, locate and guide in removing the lesions during laparoscopic operations. The findings of LUS were compared with those of preoperative trans-vaginal ultrasound, postoperative, and pathohistological examinations. In addition, a novel method for lesion segmentation was proposed in order to facilitate the laparoscopic gynecologic surgery. In our experiment, laparoscopic operation was performed using a higher frequency and more close to pelvic organs via laparoscopic access. LUS facilitates the ability of gynaecologists to find small residual lesions under laparoscopic visualization and their accurate diagnosis. LUS also helps to locate residual lesions precisely and provides guidance for the removal of residual tumor and eliminate its recurrence effectively. Our experiment provides a safer and more valuable assistance for clinical applications in laparoscopic gynecological surgery that are superior to trans-abdominal ultrasound and trans-vaginal ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fauconnier A, Chapron C, Babaki-Fard K, Dubuisson J (2000) Recurrence of leiomyomata after myomectomy. Hum Reprod 6(6):59–602

    Google Scholar 

  2. Rossetti A, Sizzi O, Soranna L, Cucinelli F, Mancuso S, Lanzone A (2001) Long-term results of laparoscopic myomectomy: recurrence rate in comparison with abdominal myomectomy. Hum Reprod 16(4):770–774

    Article  PubMed  CAS  Google Scholar 

  3. Mendizabal-Ruiz EG, Rivera M, Kakadiaris IA (2013) Segmentation of the luminal border in intravascular ultrasound B-mode images using a probabilistic approach. Med Image Anal 17(6):649–670

    Article  PubMed  Google Scholar 

  4. Maude RJ, Reinhardt JM, Tang L, Garvin MK, Sayeed AA, Ghose A, Hassan MU, Abràmoff MD (2012) Automated detection of malarial retinopathy-associated retinal hemorrhages. Investig Ophthalmol Visual Sci 53:6582–6588

    Article  Google Scholar 

  5. Zoroofi RA, Nishii T, Sato Y, Sugano N, Yoshikawa H, Tamura S (2001) Segmentation of avascular necrosis of the femoral head using 3-D MR images. Comput Med Imaging Graph 25(6):511–521

    Article  PubMed  CAS  Google Scholar 

  6. Itano O, Chiba N, Maeda S, Matsui H, Oshima G, Wada T, Nakayama T, Ishikawa H, Koyama Y (2009) Laparoscopic-assisted limited liver resection: technique, indications and results. J Hepato Biliary Pancreat Surg 16(6):711–719

    Article  Google Scholar 

  7. Tan JW, Tan YC, Chen F, Zhu Y, Leng JJ, Dong JH (2015) Endoscopic or laparoscopic approach for hepatolithiasis in the era of endoscopy in china. Surg Endosc 29(1):154–162

    Article  PubMed  Google Scholar 

  8. Barbot D, Marks J, Feld R, Liu J, Rosato F (1997) Improved staging of liver tumors using laparoscopic intraoperative ultrasound. J Surg Oncol 64(1):63–67

    Article  PubMed  CAS  Google Scholar 

  9. Han C, Ding Z, Fan J, Sun J, Qian Y (2012) Comparison of the stress response in patients undergoing gynecological laparoscopic surgery using carbon dioxide pneumoperitoneum or abdominal wall-lifting method. J Laparoendosc Adv Surg Tech 22(4):330–335

    Article  Google Scholar 

  10. Vledder M, Pawlik T, Munireddy S, Hamper U, Jong M, Choti M (2010) Factors determining the sensitivity of intraoperative ultrasonography in detecting colorectal liver metastases in the modern era. Ann Surg Oncol 17(10):2756–2763

    Article  PubMed  Google Scholar 

  11. Araki K, Conrad C, Ogiso S, Kuwano H, Gayet B (2014) Intraoperative ultrasonography of laparoscopic hepatectomy: key technique for safe liver transection. J Am Coll Surg 218:e37–e41

    Article  PubMed  Google Scholar 

  12. Machi J, Johnson J, Deziel D, Soper N, Berber E, Siperstein A, Hata M, Patel A, Singh K, Arregui M (2009) The routine use of laparoscopic ultrasound decreases bile duct injury: a multicenter study. Surg Endosc 23(2):384–388

    Article  PubMed  Google Scholar 

  13. Vapenstad C, Rethy A, Lango T, Selbekk T, Ystgaard B, Hernes T, Marvik R (2010) Laparoscopic ultrasound: a survey of its current and future use, requirements, and integration with navigation technology. Surg Endosc 24(12):2944–2953

    Article  PubMed  Google Scholar 

  14. Ferrero A, Tesoriere R, Russolillo N, Vigano L, Forchino F, Capussotti L (2014) Ultrasound-guided laparoscopic liver resections. Surg Endosc 29:1–4

    Google Scholar 

  15. Cheung T, Lo W, Yu M, Yang W, Ho S (2004) Extended experience in the use of laparoscopic ultrasound to detect pelvic nodal metastasis in patients with cervical carcinoma. Gynecol Oncol 92(3):784–788

    Article  PubMed  CAS  Google Scholar 

  16. Cheung T, Yang W, Yu M, Lo W, Ho S (1998) New development of laparoscopic ultrasound and laparoscopic pelvic lymphadenectomy in the management of patients with cervical carcinoma. Gynecol Oncol 71(1):87–93

    Article  PubMed  CAS  Google Scholar 

  17. Yang C, Chen P, Tseng J, Wang P (2002) Advantages of open laparoscopic surgery over exploratory laparotomy in patients with tubo-ovarian abscess. J Am Assoc Gynecol Laparosc 9(3):327–332

    Article  PubMed  Google Scholar 

  18. Buemi M, Frery A, Ramos H (2014) Speckle reduction with adaptive stack filters. Pattern Recogn Lett 36(15):281–287

    Article  Google Scholar 

  19. Gonzalez R (2009) Digital image processing. Pearson Education, New Jersey

    Google Scholar 

  20. Kass M, Witkin A, Terzopoulos D (1988) Snake: active contour models. Int J Comput Vision 1(4):321–331

    Article  Google Scholar 

  21. Jolliffe T (2002) Principal component analysis. Springer, New York

    Google Scholar 

  22. Jain A, Figueiredo M (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  23. Wong KKL, Tu JY, Sun Z, Dissanayake DW (2013) Methods in research and development of biomedical devices. World Scientific Publishing, Singapore

    Book  Google Scholar 

  24. Wong KKL, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D (2009) Medical imaging and processing methods for cardiac flow reconstruction. J Mech Med Biol 9(1):1–20

    Article  CAS  Google Scholar 

  25. Sooriakumaran P, York U, Somani M (2010) From a novel fad. J Endourol 24(S1):14–63

    Article  Google Scholar 

  26. Lin P, Thyer A, Soules M (2004) Intraoperative ultrasound during a laparoscopic myomectomy. Fertil Steril 81(6):1671–1674

    Article  PubMed  Google Scholar 

  27. Stanton K, Mwanri L (2013) Global maternal and child health outcomes: the role of obstetric ultrasound in low resource settings. J Prev Med 1(3):22–29

    Google Scholar 

  28. Letterie G, Marshall L (2000) Evaluation of real-time imaging using a laparoscopic ultrasound probe during operative endoscopic procedures. Ultrasound Obstet Gynecol 16(1):63–67

    Article  PubMed  CAS  Google Scholar 

  29. Helin H, Kirkinen P (2000) Laparoscopic ultrasonography during conservative ovarian surgery. Surg Endosc 14(2):161–163

    Article  PubMed  CAS  Google Scholar 

  30. Cass D, Hawkins E, Brandt M, Chintagumpala M, Bloss R, Milewicz A, Minifee P, Wesson D, Nuchtern J (2001) Surgery for ovarian masses in infants, children, and adolescents: 102 consecutive patients treated in a 15-year period. J Pediatr Surg 36(5):693–699

    Article  PubMed  CAS  Google Scholar 

  31. Granberg S, Wikland M, Jansson I (1989) Macroscopic characterization of ovarian tumors and the relation to the histological diagnosis: criteria to be used for ultrasound evaluation. Gynecol Oncol 35(2):139–144

    Article  PubMed  CAS  Google Scholar 

  32. Li S, Li X, Yang L, Yan Y, Deng D, Wu Q (2013) Applications of laparoscopic ultrasound in gynecological surgery. Zhonghua yi xue za zhi 93(37):2986–2988

    PubMed  Google Scholar 

  33. Cheung T, Lo K, Yim S, Ho S, Yu M, Yang W (2011) The technique of laparoscopic pelvic ultrasonography for metastatic lymph node. J Laparoendosc Adv Surg Tech 21(1):61–65

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported part by Grant No.201102054 from Shenzhen science and technology Bureau, and part by GrantJCYJ20140414170821285, CXZZ20140909004122087 from Shenzhen science and technology innovation Committee, Guang-dong Innovation Research Team Fund for Low-cost Health-care Technologies in China, the Guangzhou Science and Technology Planning Project (No. 2014J4100153), the Key Lab for Health Informatics of the Chinese Academy of Sciences, the Enhancing Program of Key Laboratories of Shenzhen City (ZDSY20120617113021359), and the National Natural Science Foundation of China (No. 81101120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Ying Yu or Wan-Qing Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Xue-Hao Gong and Jun Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, XH., Lu, J., Liu, J. et al. A novel ultrasound based approach for lesion segmentation and its applications in gynecological laparoscopic surgery. Australas Phys Eng Sci Med 38, 709–720 (2015). https://doi.org/10.1007/s13246-015-0363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0363-4

Keywords

Navigation