Skip to main content
Log in

Direct megavoltage photon calibration service in Australia

  • Scientific Note
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) maintains the Australian primary standard of absorbed dose. Until recently, the standard was used to calibrate ionisation chambers only in 60Co gamma rays. These chambers are then used by radiotherapy clinics to determine linac output, using a correction factor (k Q ) to take into account the different spectra of 60Co and the linac. Over the period 2010–2013, ARPANSA adapted the primary standard to work in megavoltage linac beams, and has developed a calibration service at three photon beams (6, 10 and 18 MV) from an Elekta Synergy linac. We describe the details of the new calibration service, the method validation and the use of the new calibration factors with the International Atomic Energy Agency’s TRS-398 dosimetry Code of Practice. The expected changes in absorbed dose measurements in the clinic when shifting from 60Co to the direct calibration are determined. For a Farmer chamber (model 2571), the measured chamber calibration coefficient is expected to be reduced by 0.4, 1.0 and 1.1 % respectively for these three beams when compared to the factor derived from 60Co. These results are in overall agreement with international absorbed dose standards and calculations by Muir and Rogers in 2010 of k Q factors using Monte Carlo techniques. The reasons for and against moving to the new service are discussed in the light of the requirements of clinical dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Domen SR, Lamperti PJ (1974) A heat-loss-compensated calorimeter: theory, design and performance. J. Res. Nat. Bur. Stand. 78A:595–610

    Article  CAS  Google Scholar 

  2. Ramanathan G, Harty P, Wright T, Lye J, Butler D, Webb D, Huntley R (2013) The Australian Primary Standard for absorbed dose to water (graphite calorimeter). Technical Report No. 166. Australian Radiation Protection and Nuclear Safety Agency, Yallambie

  3. Lye JE, Butler DJ, Franich RD, Harty PD, Oliver CP, Ramanathan G, Webb DV, Wright T (2013) Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation. Radiat Prot Dosimetry 155:100–109

    Article  CAS  PubMed  Google Scholar 

  4. Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smythe VG, Vynckier S (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA Technical Report Series No. 398

  5. IPSM Working Party: Lillicrap SC, Owen B, Williams JR, Williams PC (1990) Code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. Phys Med Biol 35:1355–1360

  6. IPEM Working Party: Thwaites DI, DuSautoy AR, Jordan T, McEwen MR, Nisbet A, Nahum AE, Pitchford WG (2003) The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration. Phys Med Biol 48:2929–2970

  7. McEwen MR (2010) Measurement of ionization chamber absorbed dose k Q factors in megavoltage photon beams. Med Phys 37:2179–2193

    Article  CAS  PubMed  Google Scholar 

  8. Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DW (1999) AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847–1870

    Article  CAS  PubMed  Google Scholar 

  9. McEwen M, DeWerd L, Ibbott G, Followill DS, Rogers DW, Seltzer S, Seuntjens J (2014) Addendum to the AAPM’s TG-51 protocol for clinical reference dosimetry of high energy photon beams. Med Phys 41:041501

    Article  PubMed  Google Scholar 

  10. DIN 6800-2 (2008) Dosismessverfahren nach der Sondenmethode für Photonen- und Elektronenstrahlung - Teil 2: Dosimetrie hochenergetischer Photonen- und Elektronenstrahlung mit Ionisationskammern (March)

  11. Audit of High-Energy Photon Beams in Belgian and Dutch Radiotherapy Departments (2013) NEDERLANDSE COMMISSIE VOOR STRALINGSDOSIMETRIE. Report 23 of the Netherlands Commission on Radiation Dosimetry, December 2013

  12. NCS report #18 (2008) Code of practice for the absorbed dose determination in high energy photon and electron beams, Delft, the Netherlands. www.radiationdosimetry.org

  13. Brown RL, Butler DJ (2010) Results of the 2009 dosimetry survey of Australian radiotherapy centres. Australas Phys Eng Sci Med 33:285–297

    Article  PubMed  Google Scholar 

  14. The BIPM Key Comparison database: KCDB (2014) Results for the BIPM.RI(I)-K6 comparison of absorbed dose to water at megavoltage linac energies and BIPM.RI(I)-K4 comparison of absorbed dose to water at 60Co. http://kcdb.bipm.org/. Accessed Feb 2014

  15. Picard S, Burns DT, Roger P, Harty PD, Ramanathan G, Lye JE, Wright T, Butler DJ, Cole A, Oliver C, Webb DV (2014) Key Comparison BIPM.RI(I)-K6 of the standards for absorbed dose to water of the ARPANSA, Australia and the BIPM in accelerator photon beams. Metrologia 51 Tech. Suppl. 06006

  16. Shimizu M, Morishita Y, Kato M, Tanaka T, Kurosawa T, Takata N, Saito N, Ramanathan G, Harty PD, Oliver C, Wright T, Butler DJ (2014) Comparison of the NMIJ and ARPANSA standards for absorbed dose to water in high-energy photon beams. Radiat Prot Dosim

  17. Muir BR, Rogers DWO (2010) Monte Carlo calculations of k Q , the beam quality conversion factor. Med Phys 37:5939–5950

    Article  CAS  PubMed  Google Scholar 

  18. Lye JE, Butler DJ, Ramanathan G, Franich RD (2012) Spectral differences in 6 MV beams with matched PDDs and the effect on chamber response. Phys Med Biol 57:7599–7614

    Article  CAS  PubMed  Google Scholar 

  19. Andreo P, Wulff J, Burns DT, Palmans H (2013) Consistency in reference radiotherapy dosimetry: resolution of an apparent conundrum when (60)Co is the reference quality for charged-particle and photon beams. Phys Med Biol 58:6593–6621

    Article  CAS  PubMed  Google Scholar 

  20. ICRU Report 24 (1976) Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. International Commission on Radiation Units and Measurement, Washington, Section 7.1. Accuracy required in clinical dosimetry

  21. Boyer AL, Schultheiss T (1988) Effects of dosimetric and clinical uncertainty on complication-free local tumor control. Radiother Oncol 11:65–71

    Article  CAS  PubMed  Google Scholar 

  22. Thwaites D (2013) Accuracy required and achievable in radiotherapy dosimetry: have modern technology and techniques changed our views? 7th International conference on 3D radiation dosimetry. J Phys Conf Ser 444:012006

  23. Castro P, García-Vicente F, Mínguez C, Floriano A, Sevillano D, Perez L, Torres J (2008) Study of the uncertainty in the determination of the absorbed dose to water during external beam radiotherapy calibration. J Appl Clin Med Phys 9:70–86

    Article  Google Scholar 

  24. Radiotherapy Dose-Fractionation (2006) Board of the Faculty of Clinical Oncology, Royal College of Radiologists, London. ISBN 1-905034-14-8

  25. Wu J, Wong R, Johnston M, Bezjak A, Whelan T (2003) Meta-analysis of dose-fractionation radiotherapy trials for the palliation of painful bone metastases. Int J Radiat Oncol Biol Phys 55(3):594–605

    Article  PubMed  Google Scholar 

  26. Andreo P, Huq MS, Westermark M, Song H, Tilikidis A, DeWerd L, Shortt K (2002) Protocols for the dosimetry of high-energy photon and electron beams: a comparison of the IAEA TRS-398 and previous international codes of practice. Phys Med Biol 47:3033–3053

    Article  PubMed  Google Scholar 

  27. Palmans H, Nafaa L, De JJ, Gillis S, Hoornaert MT, Martens C, Piessens M, Thierens H, Van der Plaetsen A, Vynckier S (2002) Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study. Phys Med Biol 47:421–440

    Article  PubMed  Google Scholar 

  28. Ibbott GS (2010) QA in radiation therapy: the RPC perspective. J Phys 250:1–7

    Google Scholar 

  29. Xionga G, Rogers DWO (2008) Relationship between %dd(10)x and stopping-power ratios for flattening filter free accelerators: a Monte Carlo study. Med Phys 35:2104–2109

Download references

Acknowledgments

The authors wish to thank staff from the primary standards laboratories who performed comparisons with ARPANSA during the development of this service (BIPM, NMIJ and NRC), and Rebecca Day from the Wellington Blood and Cancer Centre in New Zealand, who first raised our awareness of the possibility of using audit data to produce Fig. 4. The Australian Clinical Dosimetry Service is a joint initiative between the Department of Health and ARPANSA. The Radiological Physics Center is supported by grant CA 10953 from the National Cancer Institute, NIH, DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Butler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, D.J., Ramanathan, G., Oliver, C. et al. Direct megavoltage photon calibration service in Australia. Australas Phys Eng Sci Med 37, 753–761 (2014). https://doi.org/10.1007/s13246-014-0293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0293-6

Keywords

Navigation