Skip to main content
Log in

Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study is to compare dose enhancement of various agents, nanoparticles and chemotherapy drugs for neutron capture therapy. A 252Cf source was simulated to obtain its dosimetric parameters, including air kerma strength, dose rate constant, radial dose function and total dose rates. These results were compared with previously published data. Using 252Cf as a neutron source, the in-tumour dose enhancements in the presence of atomic 10B, 157Gd and 33S agents; 10B, 157Gd, 33S nanoparticles; and Bortezomib and Amifostine chemotherapy drugs were calculated and compared in neutron capture therapy. Monte Carlo code MCNPX was used for simulation of the 252Cf source, a soft tissue phantom, and a tumour containing each capture agent. Dose enhancement for 100, 200 and 500 ppm of the mentioned media was calculated. Calculated dosimetric parameters of the 252Cf source were in agreement with previously published values. In comparison to other agents, maximum dose enhancement factor was obtained for 500 ppm of atomic 10B agent and 10B nanoparticles, equal to 1.06 and 1.08, respectively. Additionally, Bortezomib showed a considerable dose enhancement level. From a dose enhancement point of view, media containing 10B are the best agents in neutron capture therapy. Bortezomib is a chemotherapy drug containing boron and can be proposed as an agent in boron neutron capture therapy. However, it should be noted that other physical, chemical and medical criteria should be considered in comparing the mentioned agents before their clinical use in neutron capture therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barth RF, Coderre JA, Vicente MG, Blue TE (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11(11):3987–4002

    Article  PubMed  CAS  Google Scholar 

  2. IAEA (2001) Current status of neutron capture therapy, International Atomic Energy Agency, IAEA-TECDOC-1223. Austria, Vienna

    Google Scholar 

  3. Wierzbicki JG, Maruyama Y, Porter AT (1994) Measurement of augmentation of 252Cf implant by 10B and 157Gd neutron capture. Med Phys 21(6):787–790

    Article  PubMed  CAS  Google Scholar 

  4. Rivard MJ (2000) Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy. Med Phys 27(8):1761–1769

    Article  PubMed  CAS  Google Scholar 

  5. Cerullo N, Bufalino D, Daquino G (2009) Progress in the use of gadolinium for NCT. Appl Radiat Isot 67(7–8 Suppl):S157–S160

    Article  PubMed  CAS  Google Scholar 

  6. Porras I (2011) Sulfur-33 nanoparticles: a Monte Carlo study of their potential as neutron capturers for enhancing boron neutron capture therapy of cancer. Appl Radiat Isot 69(12):1838–1841

    Article  PubMed  CAS  Google Scholar 

  7. Yanagië H, Ogata A, Sugiyama H, Eriguchi M, Takamoto S, Takahashi H (2008) Application of drug delivery system to boron neutron capture therapy for cancer. Expert Opin Drug Deliv 5(4):427–443

    Article  PubMed  Google Scholar 

  8. Pellom ST Jr, Shanker A (2012) Development of proteasome inhibitors as therapeutic drugs. J Clin Cell Immunol S5:5

    PubMed  Google Scholar 

  9. Orlowski RZ, Voorhees PM, Garcia RA, Hall MD, Kudrik FJ, Allred T et al (2005) Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 105(8):3058–3065

    Article  PubMed  CAS  Google Scholar 

  10. Bourhis J, Blanchard P, Maillard E, Brizel DM, Movsas B, Buentzel J et al (2011) Effect of amifostine on survival among patients treated with radiotherapy: a meta-analysis of individual patient data. J Clin Oncol 29(18):2590–2597

    Article  PubMed  CAS  Google Scholar 

  11. Wangerin K, Culbertson CN, Jevremovic T (2005) A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, part II: gadolinium neutron capture therapy models and therapeutic effects. Health Phys 89(2):135–144

    Article  PubMed  CAS  Google Scholar 

  12. Beach JL, Schroy CB, Ashtari M, Harris MR, Maruyama Y (1990) Boron neutron capture enhancement of 252Cf brachytherapy. Int J Radiat Oncol 18(6):1421–1427

    Article  CAS  Google Scholar 

  13. Ghassoun J, Mostacci D, Molinari V, Jehouani A (2010) Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement. Appl Radiat Isot 68(2):265–270

    Article  PubMed  CAS  Google Scholar 

  14. Rivard MJ, Zamenhof RG (2004) Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose. Appl Radiat Isot 61(5):753–757

    Article  PubMed  CAS  Google Scholar 

  15. Fuwa N, Suzuki M, Sakurai Y, Nagata K, Kinashi Y, Masunaga S et al (2008) Treatment results of boron neutron capture therapy using intra-arterial administration of boron compounds for recurrent head and neck cancer. Br J Radiol 81(969):749–752

    Article  PubMed  CAS  Google Scholar 

  16. Rivard MJ, Wierzbicki JG, Van den Heuvel F, Martin RC, McMahon RR (1999) Clinical brachytherapy with neutron emitting 252Cf sources and adherence to AAPM TG-43 dosimetry protocol. Med Phys 26(1):87–96

    Article  PubMed  CAS  Google Scholar 

  17. Konijnenberg M, Mijnheer B, Raaijmakers C, Stecher-Rasmussen F, Watkins P (1993) An investigation of the possibilities of BNCT treatment planning with the Monte Carlo method. Strahlenther Onkol 169(1):25–28

    PubMed  CAS  Google Scholar 

  18. Ye SJ (1999) Monte Carlo based protocol for cell survival and tumour control probability in BNCT. Phys Med Biol 44(2):447–461

    Article  PubMed  CAS  Google Scholar 

  19. Nava E, Burn K, Casalini L, Petrovich C, Rosi G, Sarotto M et al (2005) Monte Carlo optimisation of a BNCT facility for treating brain gliomas at the tapiro reactor. Radiat Prot Dosim 116(1–4 Pt 2):475–481

    Article  CAS  Google Scholar 

  20. Gritzay O, Kalchenko O, Klimova N, Razbudey V, Sanzhur A, Binney S (2004) Monte-Carlo calculations for the development of a BNCT neutron source at the Kyiv Research Reactor. Appl Radiat Isot 61(5):869–873

    Article  PubMed  CAS  Google Scholar 

  21. Rivard M, Sganga J, d’Errico F, Tsai J, Ulin K, Engler M (2002) Calculated neutron air kerma strength conversion factors for a generically encapsulated Cf-252 brachytherapy source. Nucl Instrum Meth A 476(1–2):119–122

    Article  CAS  Google Scholar 

  22. Rivard MJ (1999) Dosimetry for 252Cf neutron emitting brachytherapy sources: protocol, measurements, and calculations. Med Phys 26(8):1503–1514

    Article  PubMed  CAS  Google Scholar 

  23. Pelowitz DB (2008) MCNPX user’s manual, LA-CP-07-1473, version 2.6.0. Los Alamos National Laboratory

  24. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS et al (2004) Update of AAPM task group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674

    Article  PubMed  Google Scholar 

  25. Kelm RS (2009) In-water neutron and gamma dose determination for a new Cf-252 brachytherapy source. M. Sc. Thesis in Mechanical Engineering. Georgia Institute of Technology. http://smartech.gatech.edu/bitstream/1853/28121/1/kelm_robert_s_200905_mast.pdf. Accessed 2 Sept 2013

  26. Martin RC, Miller JH (2002) Applications of californium-252 neutron sources in medicine, research, and industry. Americas Nuclear Energy Symposium (ANES 2002), Miami, FL, October 16–18

  27. Fantidis JG, Potolias C, Vordos N, Bandekas DV (2011) Optimization study of a transportable neutron radiography system based on a 252Cf neutron source. Moldavian J Phys Sci 10(1):121–130

    Google Scholar 

  28. ICRU (1989) ICRU report no. 44, tissue substitutes in radiation dosimetry and measurement. ICRU, Bethesda

  29. IAEA. http://www-nds.iaea.org/exfor/endf.htm. Accessed 2 Sept 2013

  30. Kawabata S, Miyatake S, Kuroiwa T, Yokoyama KA, Iida K et al (2009) Boron neutron capture therapy for newly diagnosed glioblastoma. J Radiat Res 50(1):51–60

    Article  PubMed  Google Scholar 

  31. Paredes L, Azorín J, Balcázar M, Francois J (2007) Neutrons absorbed dose rate calculations for interstitial brachytherapy with 252Cf sources. Nucl Instrum Methods Phys Res, Sect A 580(1):582–585

    Article  CAS  Google Scholar 

  32. Melhus CS, Rivard MJ (2005) Clinical brachytherapy dosimetry parameters and mixed-field dosimetry for a high dose rate Cf-252 brachytherapy source. American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga

    Google Scholar 

  33. Krishnaswamy V (1972) Calculated depth dose tables for californium-252 sources in tissue. Phys Med Biol 17(1):56–63

    Article  PubMed  CAS  Google Scholar 

  34. Colvett RD, Rossi HH, Krishnaswamy V (1972) Dose distribution around a 252Cf needle. Phys Med Biol 17(3):356–364

    Article  PubMed  CAS  Google Scholar 

  35. Martin RC, Laxson RR, Miller JH, Wierzbicki JG, Rivard MJ, Marsh DL (1997) Development of high-activity 252Cf sources for neutron brachytherapy. Appl Radiat Isot 48(10–12):1567–1570

    Article  PubMed  CAS  Google Scholar 

  36. Rivard MJ (2000) Neutron dosimetry for a general 252Cf brachytherapy source. Med Phys 27(12):2803–2815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate Iran National Science Foundation (INSF) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Ghorbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosroabadi, M., Ghorbani, M., Rahmani, F. et al. Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs. Australas Phys Eng Sci Med 37, 541–549 (2014). https://doi.org/10.1007/s13246-014-0284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0284-7

Keywords

Navigation