Skip to main content
Log in

Four dimensional radiotherapy: a review of current technologies and modalities

  • Review
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Organ motion is a substantial concern in the treatment of thoracic tumours using radiotherapy. A number of technologies have evolved in order to address this concern in both the fields of CT imaging and radiation delivery. This review paper investigates the technologies which have been developed for the delivery of radiotherapy as well as the accuracy and workload implications of their use. Treatment techniques investigated include: breath hold, breath gating, robotic compensation and MLC manipulation. Each technique has its own advantages and drawbacks in regards to accuracy, treatment time, linac alterations and workload. Further, some treatment techniques have specific requirements for what kind of CT scans needs to be used in the planning process. This, along with the aforementioned considerations, could influence the decision as to implement some of these treatment techniques in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keall PJ et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900

    Article  PubMed  Google Scholar 

  2. ICRU (1993) ICRU report 50: prescribing, recording, and reporting photon beam therapy. International Commission on Radiation Units and Measurements, Bethesda, Marylands

  3. ICRU (1999) ICRU report 62: prescribing, recording and reporting photon beam therapy. International Commission on Radiation Units and Measurements, Bethesda, Marylands

  4. ICRU (2004) ICRU report 71: prescribing, recording, and reporting electron beam therapy. International Commission on Radiation Units and Measurements, Bethesda, Marylands

  5. ICRU (2007) ICRU report 78: prescribing, recording, and reporting proton-beam therapy. International Commission on Radiation Units and Measurements, Bethesda, Marylands

  6. ICRU (2010) ICRU report 83: prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). International Commission on Radiation Units and Measurements, Bethesda, Marylands

  7. Hanley J et al (1999) Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45(3):603–611

    Article  PubMed  CAS  Google Scholar 

  8. Moorrees J, Bezak E (2012) Four dimensional CT imaging: a review of current technologies and modalities. Aust Phys Eng Sci Med 35(1):9–23

    Article  Google Scholar 

  9. Wong JW et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phy 44(4):911–919

    Article  CAS  Google Scholar 

  10. Mah D et al (2000) Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 48(4):1175–1185

    Article  PubMed  CAS  Google Scholar 

  11. Kim DJW et al (2001) Held-breath self-gating technique for radiotherapy of non-small-cell lung cancer: a feasibility study. Int J Radiat Oncol Biol Phys 49(1):43–49

    Article  PubMed  CAS  Google Scholar 

  12. Rosenzweig KE et al (2000) The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 48(1):81–87

    Article  PubMed  CAS  Google Scholar 

  13. Remouchamps VM et al (2003) Initial clinical experience with moderate deep-inspiration breath hold using an active breathing control device in the treatment of patients with left-sided breast cancer using external beam radiation therapy. Int J Radiat Oncol Biol Phys 56(3):704–715

    Article  PubMed  Google Scholar 

  14. Cervino L et al (2009) Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy. Phys Med Biol 54:6853–6865

    Article  PubMed  Google Scholar 

  15. Barnes EA et al (2001) Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys 50(4):1091–1098

    Article  PubMed  CAS  Google Scholar 

  16. Ohara K et al (1989) Irradiation synchronized with respiration gate. Int J Radiat Oncol Biol Phys 17(4):853–857

    Article  PubMed  CAS  Google Scholar 

  17. Minohara S et al (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47(4):1097–1103

    Article  PubMed  CAS  Google Scholar 

  18. Vedam SS et al (2001) Determining parameters for respiration-gated radiotherapy. Med Phys 28(10):2139–2146

    Article  PubMed  CAS  Google Scholar 

  19. Shen S et al (2003) Validation of target volume and position in respiratory gated CT planning and treatment. Med Phys 30(12):3196–3205

    Article  PubMed  Google Scholar 

  20. Cui Y et al (2007) Robust fluoroscopic respiratory gating for lung cancer radiotherapy without implanted fiducial markers. Phys Med Biol 52:741–755

    Article  PubMed  Google Scholar 

  21. Cho B et al (2008) A monoscopic method for real-time tumour tracking using combined occasional X-ray imaging and continuous respiratory monitoring. Phys Med Biol 53:2837–2855

    Article  PubMed  Google Scholar 

  22. Seppenwoolde Y et al (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34(7):2774–2784

    Article  PubMed  Google Scholar 

  23. D’Souza W, Naqvi S, Yu C (2005) Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys Med Biol 50:4021–4030

    Article  PubMed  Google Scholar 

  24. Keall P et al (2001) Motion adaptive X-ray therapy: a feasibility study. Phys Med Biol 46:1–10

    Article  PubMed  CAS  Google Scholar 

  25. Sawant A et al (2008) Management of three-dimensional intrafraction motion through real-time DMLC tracking. Med Phys 35(5):2050–2061

    Article  PubMed  Google Scholar 

  26. Cho B et al (2009) First demonstration of combined kV/MV image-guided real-time dynamic multileaf-collimator target tracking. Int J Radiat Oncol Biol Phys 74(3):859–867

    Article  PubMed  Google Scholar 

  27. Keall PJ et al (2004) On the use of EPID-based implanted marker tracking for 4D radiotherapy. Med Phys 31(12):3492–3499

    Article  PubMed  CAS  Google Scholar 

  28. Keall PJ et al (2006) Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys 65(5):1579–1584

    Article  PubMed  Google Scholar 

  29. Yi BY et al (2008) Real-time tumor tracking with preprogrammed dynamic multileaf-collimator motion and adaptive dose-rate regulation. Med Phys 35(9):3955–3962

    Article  PubMed  Google Scholar 

  30. McQuaid D, Webb S (2008) Target-tracking deliveries using conventional multileaf collimators planned with 4D direct-aperture optimization. Phys Med Biol 53:4013–4029

    Article  PubMed  CAS  Google Scholar 

  31. Ozhasoglu C, Murphy MJ (2002) Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys 52(5):1389–1399

    Article  PubMed  Google Scholar 

  32. Gui M et al (2010) Four-dimensional intensity-modulated radiation therapy planning for dynamic tracking using a direct aperture deformation (DAD) method. Med Phys 37(5):1966–1975

    Article  PubMed  Google Scholar 

  33. Suh Y et al (2009) Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm. Phys Med Biol 54:3821–3835

    Article  PubMed  Google Scholar 

  34. Suh Y et al (2008) A deliverable four-dimensional intensity-modulated radiation therapy-planning method for dynamic multileaf collimator tumor tracking delivery. Int J Radiat Oncol Biol Phys 71(5):1526–1536

    Article  PubMed  Google Scholar 

  35. Krauss A et al (2011) Electromagnetic real-time tumor position monitoring and dynamic multileaf collimator tracking using a Siemens 160 MLC: geometric and dosimetric accuracy of an integrated system. Int J Radiat Oncol Biol Phys 79(2):579–587

    Article  PubMed  Google Scholar 

  36. Poulsen PR et al (2010) Dynamic multileaf collimator tracking of respiratory target motion based on a single kilovoltage imager during arc radiotherapy. Int J Radiat Oncol Biol Phys 77(2):600–607

    Article  PubMed  Google Scholar 

  37. Poulsen PR et al (2010) Detailed analysis of latencies in image-based dynamic MLC tracking. Med Phys 37(9):4998–5005

    Article  PubMed  Google Scholar 

  38. Ren Q et al (2007) Adaptive prediction of respiratory motion for motion compensation radiotherapy. Phys Med Biol 52:6651–6661

    Article  PubMed  Google Scholar 

  39. Smith RL et al (2009) Integration of real-time internal electromagnetic position monitoring coupled with dynamic multileaf collimator tracking: an intensity-modulated radiation therapy feasibility study. Int J Radiat Oncol Biol Phys 74(3):868–875

    Article  PubMed  Google Scholar 

  40. Sharp GC et al (2004) Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys Med Biol 49(3):425

    Article  PubMed  Google Scholar 

  41. Tewatia D et al (2006) Clinical implementation of target tracking by breathing synchronized delivery. Med Phys 33(11):4330–4336

    Article  PubMed  Google Scholar 

  42. Neicu T et al (2003) Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients. Phys Med Biol 48:587–598

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Moorrees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moorrees, J., Bezak, E. Four dimensional radiotherapy: a review of current technologies and modalities. Australas Phys Eng Sci Med 35, 399–406 (2012). https://doi.org/10.1007/s13246-012-0178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0178-5

Keywords

Navigation