Skip to main content

Advertisement

Log in

Performance evaluation of diverse T-wave alternans estimators under variety of noise characterizations and alternans distributions

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Prognostic significance of microvolt T-wave alternans (TWA) has been established since their inclusion among important risk stratifiers for sudden cardiac death. Signal processing schemes employed for TWA estimation have their peculiar theoretical assumptions and reported statistics. An unbiased comparison of all these techniques is still a challenge. Choosing three classical schemes, this study aims to achieve holistic performance evaluation of diverse TWA estimators from a three dimensional standpoint, i.e., estimation statistics, alternan distribution and ECG signal quality. Three performance indices called average deviation (ϑ L ), moment of deviation (ϑ m ) and coefficient of deviation (\(\varphi\)) are devised to quantify estimator performance and consistency. Both synthetic and real physiological noises, as well as variety of temporal distributions of alternan waveforms are simulated to evaluate estimators’ responses. Results show that modification of original estimation statistics, consideration of relevant noise models and a priori knowledge of alternan distribution is necessary for an unbiased performance comparison. Spectral method proves to be the most accurate for stationary TWA, even at SNRs as low as 5 dB. Correlation method’s strength lies in accurately detecting temporal origins of multiple alternan episodes within a single analysis window. Modified moving average method gives best estimation at lower noise levels (SNR >25 dB) for non-stationary TWA. Estimation of both MMAM and CM is adversely effected by even small baseline drifts due to respiration, although CM gives considerably higher deviation levels than MMAM. Performance of SM is only effected when fundamental frequency of baseline drift due to respiration falls within the estimation band around 0.5 cpb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adam D, Powell A, Gordon H, Cohen R (1982) Estimation of ventricular vulnerability to fibrillation through t-wave time series analysis. In: Computers in cardiology, vol 8, pp. 307–310

  2. Adam D, Smith J, Akselrod S, Nyberg S, Powell A, Cohen R (1984) Fluctuations in t-wave morphology and susceptibility to ventricular fibrillation. J Electrocardiol 17(3):209–218

    Article  PubMed  CAS  Google Scholar 

  3. Banville I, Gray R (2002) Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. J Cardiovasc Electrophysiol 13(11):1141–1149

    Article  PubMed  Google Scholar 

  4. Bloomfield D, Ritvo B, Parides M (2002) The immediate reproducibility of t wave alternans during bicycle exercise. Indian Pacing Electrophysiol J 25:1185–1191

    Article  Google Scholar 

  5. Burattini L, Zareba W, Moss A (1999) Correlation method for detection of transient t-wave alternans in digital holter ecg recordings. Ann Electrocardiol 4(4):416–426

    Article  Google Scholar 

  6. Burattini L, Zareba W, Burattini R (2008) Adaptive match filter based method for time vs. amplitude characterization of microvolt ecg t-wave alternans. Ann Biomed Eng 36(9):1558–1564

    Article  PubMed  Google Scholar 

  7. Burattini L, Bini S, Burattini R (2010) Correlation method versus enhanced modified moving average method for automatic detection of t-wave alternans. Comput Methods Programs Biomed 98(1):94–102

    Article  PubMed  Google Scholar 

  8. Chinushi M, Restivo M, Caref E, El-Sherif N (1998) Electrophysiological basis of arrhythmogenicity of qt/t alternans in the long qt syndrome: tridimensional analysis of the kinetics of cardiac repolarization. Circ Res 83:614–628

    Article  PubMed  CAS  Google Scholar 

  9. Franz M, Swerdlow C, Liem L, Schaefer J (1988) Cycle length dependence of human action potential duration in vivo. effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J Clin Investig 82(3):972–979

    Article  PubMed  CAS  Google Scholar 

  10. Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R, Mietus J, Moody G, Peng C, Stanley H (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220. http://circ.ahajournals.org/cgi/content/full/101/23/e215PMID:1085218; doi:10.1161/01.CIR.101.23.e215"

  11. Hering H (1909) Experimentelle studien an saugentieren uber das electrocardiogram. Z Exper Med 7:363

    Google Scholar 

  12. Laguna P, Ruiz M, Moody G, Mark R (1996) Repolarization alternans detection using the kl transform and the beatquency spectrum. In: Computers in cardiology, pp 673–676

  13. Lewis T (1910) Notes upon alternation of the heart. Q J Med 4:141–144

    Google Scholar 

  14. Martinez E, Lopez P, Roldan F, Velasco M (2007) Enhanced spectral method for t-wave alternans analysis. In: IEEE international symposium on intelligent signal processing, pp 1–6

  15. Martinez J, Olmos S (2002) A robust t wave alternans detector based on the glrt for laplacian noise distribution. In: Comput Cardiol, pp 677–680

  16. Martinez J, Olmos S (2005) Methodological principles of t wave alternans analysis: a unified framework. IEEE Trans Biomed Eng 52(4):599–613

    Article  PubMed  Google Scholar 

  17. Martinez J, Olmos S, Laguna P (2000) Simulation study and performance evaluation of t-wave alternans detectors. In: 22nd annual international conference of IEEE engineering in medicine and biology society, vol 3, pp 2291–2297

  18. Monasterio V, Laguna P, Martinez J (2009) Multilead analysis of t-wave alternans in the ecg using principal component analysis. IEEE Trans Biomed Eng 56(7):1880–1890

    Article  PubMed  Google Scholar 

  19. Moody G, Muldrow W, Mark R (1984) A noise stress test for arrhythmia detectors. In: Computers in cardiology, vol 11, pp 381–384

  20. Narayan S (2006) T-wave alternans and the susceptibility to ventricular arrhythmias: state of the art paper. J Am Coll Cardiol 47(2):269–281

    Article  Google Scholar 

  21. Narayan S, Lindsay B, Smith J (1999) Demonstrating the pro-arrhythmic preconditioning of single premature extrastimuli using the magnitude, phase and temporal distribution of repolarization alternans. Circulation 100:1887–1893

    Article  PubMed  CAS  Google Scholar 

  22. Nearing B, Huang A, Verrier R (1991) Dynamic tracking of cardiac vulnerability by complex demodulation of the t wave. Science 252(5004):437–440

    Article  PubMed  CAS  Google Scholar 

  23. Nearing B, Verrier R (2002) Modified moving average analysis of t-wave alternans to predict ventricular fibrillation with high accuracy. J Appl Physiol 92(2):541–549

    PubMed  Google Scholar 

  24. Nieminen T, Verrier R (2010) Usefulness of t-wave alternans in sudden death risk stratification and guiding medical therapy. Ann Noninvas Electrocardiol 15(3):276–288

    Article  PubMed  Google Scholar 

  25. Pastore J, Steven M, Girouard D, Laurita K, Akar F, Rosenbaum D (1999) Mechanism linking t-wave alternans to the genesis of cardiac fibrillation. Circulation 99:1385–1394

    Article  PubMed  CAS  Google Scholar 

  26. Pham Q, Quan K, Rosenbaum D (2003) T-wave alternans: marker, mechanism, and methodology for predicting sudden cardiac death. J E 36:75–81

    Google Scholar 

  27. Richter S, Duray G, Hohnloser S (2005) How to analyze twave alternans. Heart Rhythm 2(11):1268–1271

    Article  PubMed  Google Scholar 

  28. Smith J, Clancy E, Valeri C, Ruskin J, Cohen R (1988) Electrical alternans and cardiac electrical instability. Circulation 77:110–121

    Article  PubMed  CAS  Google Scholar 

  29. Srikanth T, Lin D, Kanaan N, Gu H (2002) Presence of t wave alternans in the statistical context a new approach to low amplitude alternans measurement. In: Computers in cardiology, vol 29, pp 681–684

  30. Strumillo P, Ruta J (2002) Poincare mapping for detecting abnormal dynamics of cardiac repolarization. IEEE Eng Med Biol Mag 21(1):62–65

    Article  PubMed  Google Scholar 

  31. Velasco M, Roldan F, Llorente J, Barner K (2010) Nonlinear trend estimation of the ventricular repolarization segment for t-wave alternans detection. IEEE Trans Biomed Eng 57(10):2402–2412

    Article  Google Scholar 

  32. Verrier R, Kumar K, Nearing B (2009) Basis for sudden cardiac death prediction by t-wave alternans from an integrative physiology perspective. Heart Rhythm 6(3):416–422

    Article  PubMed  Google Scholar 

  33. Verrier R, Klingenheben T, Malik M, El-Sherif N, Exner D, Hohnloser S, Ikeda T, Martinez J, Narayan S, Nieminen T, Rosenbaum D (2011) Microvolt t-wave alternans: physiological basis, methods of measurement, and clinical utility—consensus guideline by international society for holter and noninvasive electrocardiology. J Am Coll Cardiol 58(13):1309–1324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Dilawer Bakhshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhshi, A.D., Bashir, S., Shafi, I. et al. Performance evaluation of diverse T-wave alternans estimators under variety of noise characterizations and alternans distributions. Australas Phys Eng Sci Med 35, 439–454 (2012). https://doi.org/10.1007/s13246-012-0170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0170-0

Keywords

Navigation