Skip to main content

Advertisement

Log in

Predicting the continuous values of breast cancer relapse time by type-2 fuzzy logic system

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Microarray analysis and gene expression profile have been widely used in tumor classification, survival analysis and ER statues of breast cancer. Sample discrimination as well as identification of significant genes have been the focus of most previous studies. The aim of this research is to propose a fuzzy model to predict the relapse time of breast cancer by using breast cancer dataset published by van’t Veer. Fuzzy rule mining based on support vector machine has been used in a hybrid method with rule pruning and shown its ability to divide the samples in many subgroups. To handle the existence of uncertainties in linguistic variables and fuzzy sets, the TSK model of Interval type-2 fuzzy logic system has been used and a new simple method is also developed to consider the uncertainties of the rules which have been optimized by genetic algorithm. B632 validation method is applied to estimate the error of the model. The results with 95 % confidence interval show a reasonable accuracy in prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. van’t Veer L, Dai H et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  2. Alba E, Garcia-Nieto J et al (2007) Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: Evolutionary computation. CEC 2007. IEEE congress, 25–28 September, pp 284–290

  3. Bertucci F, Finetti P et al (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 64:8558–8565

    Article  PubMed  CAS  Google Scholar 

  4. Sotiriou C, Neo S et al (2003) Breast cancer classification and prognosis based gene expression profiles from a population-based study. Proc Nat Acad Sci 100(18):10393–10398

    Article  PubMed  CAS  Google Scholar 

  5. West M, Blanchette C et al (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Nat Acad Sci 98:11462–11467

    Article  PubMed  CAS  Google Scholar 

  6. Gruvberger S, Ringner M et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984

    PubMed  CAS  Google Scholar 

  7. Sorlie T, Perou CM et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Nat Acad Sci 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi H, Masuda K et al (2004) Prognostic prediction with multiple fuzzy neural models using expression profiles from DNA microarray for metastasis of breast cancer. J Biosci Bioeng 98(3):193–199

    PubMed  CAS  Google Scholar 

  9. Li F, Yang Y (2005) Analysis of recursive gene selection approaches from micro-array data. Bioinformatics 21:3741–3747

    Article  PubMed  CAS  Google Scholar 

  10. Jiang D, Zhao N (2006) A clinical prognostic prediction of lymph node-negative breast cancer by gene expression profiles. J Cancer Res Clin Oncol 132:579–587

    Article  PubMed  Google Scholar 

  11. Alexe G, Alexe S et al (2005) Breast cancer prognosis by combinatorial analysis of gene expression data. Breast Cancer Res 8(4):R41

    Article  Google Scholar 

  12. Shen R, Ghosh D et al (2006) Eigengene-based linear discriminant model for tumor classification using gene expression microarray data. Bioinformatics 22(21):2635–2642

    Article  PubMed  CAS  Google Scholar 

  13. Mahmoodian H, Hamiruce Marhaban M, Abdulrahim R, Rosli R, Saripan I (2011) Using fuzzy association rule mining in cancer classification. Australas Phys Eng Sci Med 34(1):41–54

    Article  PubMed  Google Scholar 

  14. Gruvberger S, Eden P et al (2004) Predicting continuous values of prognostic markers in breast cancer from microarray gene expression profiles. Mol Cancer Ther 3:161–168; 61:5979–5984

    Google Scholar 

  15. Zade L (1976) A fuzzy-algorithm approach to the definition of complex or imprecise concepts. Int J Man–Mach Stud 8:249–291

    Article  Google Scholar 

  16. Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufman, San Francisco

  17. Pal K, Mitra S (1999) Neuro-fuzzy pattern recognition: methods in soft computing. Wiley series on intelligent systems. Wiley-Interscience, New York

    Google Scholar 

  18. Kouk C, Fu A et al (1998) Mining fuzzy association rules in data base. SIGMOD 27:41–46

    Article  Google Scholar 

  19. Chen S, Wang J et al (2008) Extraction of fuzzy rules by using support vector machines. In: Fifth international conference on fuzzy systems and knowledge discovery

  20. Farquad M, Ravi V et al (2008) Rule extraction using support vector machine based hybrid classifier. In: IEEE region 10 conference, November.

  21. Jain R, Abraham A (2004) A comparative study of fuzzy classification methods on breast cancer data. Australas Phys Eng Sci Med 27(4):213–218

    Article  PubMed  CAS  Google Scholar 

  22. Guyon I, Weston J et al (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  23. Mendel J (2007) Type-2 fuzzy sets and systems: an overview. IEEE Computational Intelligence Magazine, February

  24. Karnik N, Mendel J et al (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  25. Castillo O, Melin P (2008) Type-2 fuzzy logic: theory and applications. Studies in fuzziness and soft computing, vol 223. Springer, Berlin

    Google Scholar 

  26. Karnik N, Mendel J et al (2001) Centroid of a type-2 fuzzy set. Inf Sci 132:195–220

    Article  Google Scholar 

  27. Mendel J (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice Hall, Upper Saddle River

    Google Scholar 

  28. Ishibuchi H, Yamamoto T (2005) Rule weight specification in fuzzy rule-based classification systems. IEEE Trans Fuzzy Syst 13(4):428–435

    Article  Google Scholar 

  29. Vaníček J, Vrana I et al (2009) Fuzzy aggregation and averaging for group decision making: a generalization and survey. Knowl-Based Syst 22:79–84

    Article  Google Scholar 

  30. Yen J, Wang L et al (1998) Improving the interpretability of TSK fuzzy models by combining global and local learning. IEEE Trans Fuzzy Syst 6(4):530–537

    Article  Google Scholar 

  31. Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross validation. J Am Statist Assoc 78:316–331

    Google Scholar 

  32. Efron B, Tibshirani R (1997) Improvement on cross-validation: the.632+ bootstrap method. J Am Statist Assoc 92:548–560

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mahmoodian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoodian, H. Predicting the continuous values of breast cancer relapse time by type-2 fuzzy logic system. Australas Phys Eng Sci Med 35, 193–204 (2012). https://doi.org/10.1007/s13246-012-0147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0147-z

Keywords

Navigation