Skip to main content
Log in

Long-term two-dimensional pixel stability of EPIDs used for regular linear accelerator quality assurance

  • Scientific Note
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The long-term stability of three clinical electronic portal imaging devices (EPIDs) was studied to determine if longer times between calibrations can be justified. This would make alternatives to flood-field calibration of EPIDs clinically feasible, allowing for more effective use of EPIDs for dosimetry. Images were acquired monthly for each EPID as part of regular clinical quality assurance over a time period of approximately 3 years. The images were analysed to determine (1) the long-term stability of the EPID positioning system, (2) the dose response of the central pixels and (3) the long term stability of each pixel in the imager. The position of the EPID was found to be very repeatable with variations less than 0.3 pixels (0.27 mm) for all imagers (1 standard deviation). The central axis dose response was found to reliably track ion chamber measurements to better than 0.5%. The mean variation in pixel response (1 standard deviation), averaged over all pixels in the EPID, was found to be at most 0.6% for the three EPIDs studied over the entire period. More than 99% of pixels in each EPID showed less than 1% variation. Since the EPID response was found to be very stable over long periods of time, an annual calibration should be sufficient in most cases. More complex dosimetric calibrations should be clinically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Clews L, Greer PB (2009) An EPID based method for efficient and precise asymmetric jaw alignment quality assurance. Med Phys 36(12):5488–5496

    Article  PubMed  Google Scholar 

  2. Greer PB, Barnes MP (2007) Investigation of an amorphous silicon EPID for measurement and quality assurance of enhanced dynamic wedge. Phys Med Biol 52(4):1075–1087

    Article  PubMed  Google Scholar 

  3. Warkentin B, Steciw S, Rathee S, Fallone BG (2003) Dosimetric IMRT verification with a flat-panel EPID. Med Phys 30(12):3143–3155

    Article  PubMed  CAS  Google Scholar 

  4. Van Esch A (2004) The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiother Oncol 71(2):223–234

    Article  PubMed  Google Scholar 

  5. Renner WD, Norton K, Holmes T (2005) A method for deconvolution of integrated electronic portal images to obtain incident fluence for dose reconstruction. J Appl Clin Med Phys 6(4):22–39

    Article  PubMed  Google Scholar 

  6. Steciw S, Warkentin B, Rathee S, Fallone BG (2005) Three-dimensional IMRT verification with a flat-panel EPID. Med Phys 32(2):600–612

    Article  PubMed  CAS  Google Scholar 

  7. Wendling M, Louwe RJW, McDermott LN, Sonke JJ, van Herk M, Mijnheer BJ (2006) Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method. Med Phys 33(2):259–273

    Article  PubMed  Google Scholar 

  8. Nicolini G, Fogliata A, Vanetti E, Clivio A, Cozzi L (2006) GLAaS: an absolute dose calibration algorithm for an amorphous silicon portal imager. Applications to IMRT verifications. Med Phys 33:2839–2851

    Article  PubMed  Google Scholar 

  9. Ansbacher W (2006) Three-dimensional portal image-based dose reconstruction in a virtual phantom for rapid evaluation of IMRT plans. Med Phys 33(9):3369–3382

    Article  PubMed  CAS  Google Scholar 

  10. Lee C, Menk F, Cadman P, Greer PB (2009) A simple approach to using an amorphous silicon EPID to verify IMRT planar dose maps. Med Phys 36(3):984–992

    Article  PubMed  CAS  Google Scholar 

  11. Kroonwijk M, Pasma KL, Quint S, Koper PCM, Visser AG, Heijmen BJM (1998) In vivo dosimetry for prostate cancer patients using an electronic portal imaging device (EPID); demonstration of internal organ motion. Radiother Oncol 49(2):125–132

    Article  PubMed  CAS  Google Scholar 

  12. Mans A, Wendling M, McDermott LN, Sonke JJ, Tielenburg R, Vijlbrief R, Mijnheer B, van Herk M, Stroom JC (2010) Catching errors with in vivo EPID dosimetry. Med Phys 37(6):2638–2644

    Article  PubMed  CAS  Google Scholar 

  13. Greer PB, Popescu CC (2003) Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Med Phys 30(7):1618–1627

    Article  PubMed  Google Scholar 

  14. Parent L, Fielding AL, Dance DR, Seco J, Evans PM (2007) Amorphous silicon EPID calibration for dosimetric applications: comparison of a method based on Monte Carlo prediction of response with existing techniques. Phys Med Biol 52(12):3351–3368

    Article  PubMed  CAS  Google Scholar 

  15. Kairn T, Cassidy D, Sandford PM, Fielding AL (2008) Radiotherapy treatment verification using radiological thickness measured with an amorphous silicon electronic portal imaging device: Monte Carlo simulation and experiment. Phys Med Biol 53:3903–3919

    Article  PubMed  CAS  Google Scholar 

  16. Siebers JV, Kim JO, Ko L, Keall PJ, Mohan R (2004) Monte Carlo computation of dosimetric amorphous silicon electronic portal images. Med Phys 31(7):2135–2146

    Article  PubMed  Google Scholar 

  17. Greer PB (2005) Correction of pixel sensitivity variation and off-axis response for amorphous silicon EPID dosimetry. Med Phys 32(12):3558–3568

    Article  PubMed  Google Scholar 

  18. Parent L, Seco J, Evans PM, Fielding A, Dance DR (2006) Monte Carlo modelling of a-Si EPID response: the effect of spectral variations with field size and position. Med Phys 33(12):4527–4540

    Article  PubMed  Google Scholar 

  19. Treatment Delivery Instructions for Use (2010) vol 100047557–01. Varian Medical Systems. Palo Alto, CA

    Google Scholar 

  20. Perkins A, Madebo M, Cramb J (2006) Analysis of pixel defects in a-Si epids. Australas Phys Eng Sci Med 29(4):360–361

    Google Scholar 

  21. Louwe RJW, McDermott LN, Sonke JJ, Tielenburg R, Wendling M, van Herk MB, Mijnheer BJ (2004) The long-term stability of amorphous silicon flat panel imaging devices for dosimetry purposes. Med Phys 31(11):2989–2995

    Article  PubMed  CAS  Google Scholar 

  22. Menon GV, Sloboda RS (2004) Quality assurance measurements of a-Si epid performance. Med Dosim 29(1):11–17

    Article  PubMed  Google Scholar 

  23. Winkler P, Georg D (2006) An intercomparison of 11 amorphous silicon EPIDs of the same type: implications for portal dosimetry. Phys Med Biol 51(17):4189–4200

    Article  PubMed  Google Scholar 

  24. Budgell GJ, Zhang R, Mackay RI (2007) Daily monitoring of linear accelerator beam parameters using an amorphous silicon EPID. Phys Med Biol 52(6):1721–1733

    Article  PubMed  CAS  Google Scholar 

  25. Rowshanfarzad P, McCurdy BMC, Sabet M, Lee C, O’Connor DJ, Greer PB (2010) Measurement and modeling of the effect of support arm backscatter on dosimetry with a varian EPID. Med Phys 37(5):2269–2278

    Article  PubMed  Google Scholar 

  26. Siewerdsen JH, Jaffray DA (1999) A ghost story: spatio-temporal response characteristics of an indirect-detection flat-panel imager. Med Phys 26(8):1624–1641

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. J Siebers for useful initial discussions relating to this study. The first author is supported by a National Health and Medical Research Council grant #569211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, B.W., Clews, L. & Greer, P.B. Long-term two-dimensional pixel stability of EPIDs used for regular linear accelerator quality assurance. Australas Phys Eng Sci Med 34, 459–466 (2011). https://doi.org/10.1007/s13246-011-0106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-011-0106-0

Keywords

Navigation