Skip to main content

Advertisement

Log in

Monte Carlo study of the energy response and depth dose water equivalence of the MOSkin radiation dosimeter at clinical kilovoltage photon energies

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Skin dose is often the quantity of interest for radiological protection, as the skin is the organ that receives maximum dose during kilovoltage X-ray irradiations. The purpose of this study was to simulate the energy response and the depth dose water equivalence of the MOSkin radiation detector (Centre for Medical Radiation Physics (CMRP), University of Wollongong, Australia), a MOSFET-based radiation sensor with a novel packaging design, at clinical kilovoltage photon energies typically used for superficial/orthovoltage therapy and X-ray CT imaging. Monte Carlo simulations by means of the Geant4 toolkit were employed to investigate the energy response of the CMRP MOSkin dosimeter on the surface of the phantom, and at various depths ranging from 0 to 6 cm in a 30 × 30 × 20 cm water phantom. By varying the thickness of the tissue-equivalent packaging, and by adding thin metallic foils to the existing design, the dose enhancement effect of the MOSkin dosimeter at low photon energies was successfully quantified. For a 5 mm diameter photon source, it was found that the MOSkin was water equivalent to within 3% at shallow depths less than 15 mm. It is recommended that for depths larger than 15 mm, the appropriate depth dose water equivalent correction factors be applied to the MOSkin at the relevant depths if this detector is to be used for depth dose assessments. This study has shown that the Geant4 Monte Carlo toolkit is useful for characterising the surface energy response and depth dose behaviour of the MOSkin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rozenfeld AB (2008) Radiation sensor and dosimeter (MOSkin). PCT/AU2008/000788 Australia. Accessed 2 June 2008

  2. Kwan IS, Wilkinson D, Cutajar D, Lerch M, Rosenfeld A, Howie A, Bucci J, Chin Y, Perevertaylo VL (2009) The effect of rectal heterogeneity on wall dose in high dose rate brachytherapy. Med Phys 36(1):224–232

    Article  PubMed  CAS  Google Scholar 

  3. Hardcastle N, Soisson E, Metcalfe P, Rosenfeld A, Tome W (2008) Dosimetric verification of helical tomotherapy for total scalp irradiation. Med Phys 35(11):5061–5068

    Article  PubMed  Google Scholar 

  4. Qi Z, Deng X, Huang S, Zhang L, He Z, Li A, Kwan I, Lerch M, Cutajar D, Metcalfe P, Rosenfeld A (2009) In vivo verification of superficial dose for head and neck treatments using intensity-modulated techniques. Med Phys 36(1):59–70

    Article  PubMed  Google Scholar 

  5. Brucker GJ, Kronenberg S, Gentner F (1995) Effects of package geometry, materials, and die design on energy dependence of pMOS dosimeters. IEEE Trans Nucl Sci 42(1):33–40

    Article  CAS  Google Scholar 

  6. Wang B, Xu XG, Kim CH (2005) Monte Carlo study of MOSFET dosemeter characteristics: dose dependence on photon energy, direction and dosemeter composition. Radiat Prot Dosim 113(1):40–46

    Article  CAS  Google Scholar 

  7. Wang B, Kim CH, Xu XG (2004) Monte Carlo modeling of a high-sensitivity MOSFET dosimeter for low- and medium-energy photon sources. Med Phys 31(5):1003–1008

    Article  PubMed  CAS  Google Scholar 

  8. Rosenfeld AB, Carolan MG, Kaplan GI, Allen JB, Khivrich VI (1995) MOSFET dosimeters: the role of encapsulation on dosimetric characteristics in mixed gamma-neutron and megavoltage X-ray fields. IEEE Trans Nucl Sci 42(6):1870–1877

    Article  CAS  Google Scholar 

  9. Savic Z, Stankovic S, Kovacevic M, Petrovic M (1996) Energy dependence of pMOS dosemeters. Radiat Prot Dosim 64:205–211

    CAS  Google Scholar 

  10. Long DM, Millward DG, Wallace J (1982) Dose enhancement effects in semiconductor devices. IEEE Trans Nucl Sci 29(6):1980–1984

    Article  Google Scholar 

  11. Nowotny R, Hvfer A (1985) Ein Programm fur die Berechnung von diagnostischen Roentgenspektren. Fortschr Roentgenstr 142:685–689

    Article  CAS  Google Scholar 

  12. Poludniowski G, Landry G, DeBlois F, Evans P, Verhaegen F (2009) SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes. Phys Med Biol 54(19):N433–N438

    Article  PubMed  CAS  Google Scholar 

  13. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) Geant4-a simulation toolkit. Nuclear instruments and methods in physics research section a: accelerators, spectrometers. Detect Assoc Equip 506(3):250–303

    Article  CAS  Google Scholar 

  14. Chauvie S, Guatelli S, Ivanchenko V, Longo F, Mantero A, Mascialino B, Nieminen P, Pandola L, Parlati S, Peralta L, Pia MG, Piergentili M, Rodrigues P, Saliceti S, Trindade A (2004) Geant4 low energy electromagnetic physics. In: Proceedings of IEEE-NSS, Rome (Italy), 2004

  15. Kwan I, Rosenfeld A, Qi Z, Wilkinson D, Lerch M, Cutajar D, Safavi-Naeni M, Butson M, Bucci J, Chin Y (2008) Skin dosimetry with new MOSFET detectors. Radiat Meas 43(2–6):929–932

    Article  CAS  Google Scholar 

  16. Charles M (2004) The skin in radiological protection: recent advances and residual unresolved issues. Radiat Prot Dosim 109(4):323–330

    Article  CAS  Google Scholar 

  17. Roesch W (1986) Problems related to the critical depth of skin. Radiat Prot Dosim 14(2):91–93

    Google Scholar 

  18. International Commission on Radiological Protection (1991) The biological basis for dose limitation in the skin (ICRP Publication 59). Ann ICRP, vol 22 (2), Pergamon Press, Oxford

  19. Berger JH, Seltzer SM (1998) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1–92 and 48 additional substances of dosimetric interest. Available at http://www.nist.gov/physlab/data/xraycoef/index.cfm. Accessed 28 April 2011

Download references

Acknowledgments

The authors wish to thank Dean Cutajar and Brad Oborn for the use of the CMRP High Performance Computing Cluster where this simulation study was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. L. Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, C.P.L., Othman, M.A.R., Cutajar, D. et al. Monte Carlo study of the energy response and depth dose water equivalence of the MOSkin radiation dosimeter at clinical kilovoltage photon energies. Australas Phys Eng Sci Med 34, 273–279 (2011). https://doi.org/10.1007/s13246-011-0075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-011-0075-3

Keywords

Navigation