Skip to main content
Log in

ROPES eye plaque brachytherapy dosimetry for two models of 103Pd seeds

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 17 August 2011

Abstract

Brachytherapy dose distributions are calculated for 15 mm ROPES eye plaque loaded with model Theragenics200 and IR06-103Pd seeds. The effects of stainless steel backing and Acrylic insert on dose distribution along the central axis of the eye plaque and at critical ocular structure are investigated. Monte Carlo simulation was carried out with the Version 5 of the MCNP. The dose at critical ocular structure by considering the eye composition was calculated. Results are compared with the calculated data for COMS eye plaque loaded with Theragenics200 palladium-103 seeds and model 6711 iodine-125 seed. The air kerma strength of the IR06-103Pd seed to deliver 85 Gy in apex of tumor in water medium was calculated to be 4.10 U/seed. Along the central axis of stainless steel plaque loaded with new 103Pd seeds in Acrylic insert, the dose reduction relative to water is 6.9% at 5 mm (apex). Removal of the Acrylic insert from the plaque (replacing with water) did not make significantly difference in dose reduction results (~0.2%). The presence of the stainless steel backing results in dose enhancement near the plaque relative to water. Doses at points of interest are higher for ROPES eye plaque when compared to COMS eye plaque. The dosimetric parameters calculated in this work for the new palladium seed, showed that in dosimetry point of view, the IR06-103Pd seed is suitable for use in brachytherapy. The effect of Acrylic insert on dose distribution is negligible and the main effect on dose reduction is due to the presence of stainless steel plaque backing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grin-Jorgensen C, Berke A, Grin M (1992) Ocular melanoma. Dermatol Clin 10:663–668

    PubMed  CAS  Google Scholar 

  2. Robertson DM (2003) Changing concepts in the management of choroidal melanoma. Am J Ophthalmol 136:161–170

    Article  PubMed  Google Scholar 

  3. Finger PT (1997) Radiation therapy for choroidal melanoma. Surv Ophthalmol 42:215–232

    Article  PubMed  CAS  Google Scholar 

  4. Nag S, Quivey J, Earle J, Followill D, Fontanesi J, Finger PT (2003) The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. Int J Radiat Oncol Biol Phys 56:544–555

    Article  PubMed  Google Scholar 

  5. Char DH, Kroll S, Quivey JM, Castro J (1996) Long term visual outcome of radiated uveal melanomas in eyes eligible for randomisation to enucleation versus brachytherapy. Br J Ophthalmol 80:117–124

    Article  PubMed  CAS  Google Scholar 

  6. Melia BM, Abramson DH, Albert DM, Boldt HC, Earle JD, Hanson WF et al (2001) Collaborative Ocular Melanoma Study (COMS) randomized trial of 125I brachytherapy for medium choroidal melanoma. I. Visual acuity after 3 years. COMS report no. 16. Ophthalmology 108:348–366

  7. Diener-West M, Earle JD, Fine SL, Hawkins BS, Moy CS, Reynolds SM (2001) The COMS randomized trial of iodine-125 brachytherapy for choroidal melanoma. III: initial mortality findings COMS Report No. 18. Arch Ophthalmol 119:969–982

  8. Jampol LM, Moy CS, Murray TG, Reynolds SM, Albert DM, Schachat AP et al (2002) The COMS randomized trial of iodine-125 brachytherapy for choroidal melanoma: IV. Local treatment failure and enucleation in the first 5 years after brachytherapy COMS report no. 19. Ophthalmology 109:2197–2206

  9. Heikkone J, Summanen P, Immonen I, Tommila P, Toivola H, Forss M et al (1992) Radiotherapy of malignant melanoma of the uvea with I-125 seeds. Acta Ophthalmol (Copenh) 70:780–785

    Google Scholar 

  10. Robertson DM, Earle J, Anderson JA (1983) Preliminary observations regarding the use of iodine125 in the management of choroidal melanoma. Trans Ophthalmol Soc UK 103:155–160

    PubMed  Google Scholar 

  11. Packer S, Rotman M (1980) Radiotherapy of choroidal melanoma with iodine-125. Int Ophtalmol Clin 20:135–142

    CAS  Google Scholar 

  12. Hall EJ, Brenner DJ (1991) The dose rate effect revisited: radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys 21:1403–1414

    Article  PubMed  CAS  Google Scholar 

  13. Finger PT, Berson A, Szechter A (1999) Palladium-103 plaque radiotherapy for choroidal melanoma: results of a 7 years study. Ophthalmology 106:606–613

    Article  PubMed  CAS  Google Scholar 

  14. Finger PT, Moshfeghi DM, Ho TK (1991) Palladium-103 ophthalmic plaque radiotherapy. Arch Ophthalmol 109:1610–1613

    PubMed  CAS  Google Scholar 

  15. Saidi P, Sadeghi M, Shirazi A, Tenreiro C (2010) Monte Carlo calculation of dosimetry parameters for the IR08–103Pd brachytherapy source. Med Phys 37:2509–2515

    Article  PubMed  CAS  Google Scholar 

  16. Cygler J, Szanto J, Soubra M (1990) Effect of gold and silver backing on the dose rate around and 125I seed. Med Phys 17:172–178

    Article  PubMed  CAS  Google Scholar 

  17. Wu A, Sternick ES, Muise DJ (1988) Effect of gold shielding on the dosimetry of an 125-I seed at close range. Med Phys 15:627–628

    Article  PubMed  CAS  Google Scholar 

  18. Luxton G, Astrahan MA, Petrovich Z (1988) Backscatter measurements from a single seed of 125I for ophthalmic plaque dosimetry. Med Phys 15:397–400

    Article  PubMed  CAS  Google Scholar 

  19. Thomson RM, Taylor REP, Rogers DWO (2008) Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy. Med Phys 35:5530–5543

    Article  PubMed  CAS  Google Scholar 

  20. Chiu-Tsao S, Anderson LL, O’Brien K, Stabile L, Liu JC (1993) Dosimetry for 125I seed (model 6711) in eye plaque. Med Phys 20:383–389

    Article  PubMed  CAS  Google Scholar 

  21. Weaver KA (1986) The dosimetry of 125I seed eye plaques. Med Phys 13:78–83

    Article  PubMed  CAS  Google Scholar 

  22. De la Zerda A, Chiu-Tsao S, Lin J, Boulay LL, Kanna I, Tsao H (1996) 125I plaque dose distribution including penumbra characteristics. Med Phys 23:407–418

    Article  Google Scholar 

  23. Granero D, Perez-Calatayud J, Ballester F, Casal E (2004) Dosimetric study of the 15 mm ROPES eye plaque. Med Phys 31:3330–3336

    Article  PubMed  CAS  Google Scholar 

  24. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, Mitch MG, Nath R, Williamson JF (2004) Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31:633–674

    Article  PubMed  Google Scholar 

  25. Williamson JF (2000) Monte Carlo modeling of the transverse-axis dose distribution of the model 200 103Pd interstitial brachytherapy source. Med Phys 27:643–654

    Article  PubMed  CAS  Google Scholar 

  26. Thomson RM, Rogers DWO (2010) Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy with various seed models. Med Phys 37:368–376

    Article  PubMed  CAS  Google Scholar 

  27. Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code-Version 5, Los Alamos National Laboratory, http://mcnp-green.lanl.gov/index.html, (last reviewed 29-Jan-2004)

  28. Sadeghi M, Raisali Gh, Hosseini SH, Shahvar A (2008) Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source. Med Phys 35:1288–1294

    Article  PubMed  CAS  Google Scholar 

  29. Melhus CS, Rivard MJ (2008) COMS eye plaque brachytherapy dosimetry simulations for 103Pd, 125I, 131Cs. Med Phys 35:3364–3371

    Article  PubMed  CAS  Google Scholar 

  30. Popescu CC, Wise J, Sowards K, Meigooni AS, Ibbott GS (2000) Dosimetric characteristic of the Pharma Seed model BT-125-I source. Med Phys 27:2174–2181

    Article  PubMed  CAS  Google Scholar 

  31. Kouwenhoven E, Laarse R, Schaart DR (2001) Variation in interpretation of the AAPM TG-43 geometry factor leads to unclearness in brachytherapy dosimetry. Med Phys 28:1965–1966

    Article  PubMed  CAS  Google Scholar 

  32. Meigooni AS, Bharucha Z, Yoe-Sein M, Sowards K (2001) Dosimetric characteristic of the best double–wall 103Pd brachytherapy source. Med Phys 28:2568–2575

    Article  PubMed  CAS  Google Scholar 

  33. Bearden JA, Burr AF (1967) Reevaluation of X-ray atomic energy levels. Rev Med Phys 39:125–142

    Article  CAS  Google Scholar 

  34. ICRU (1992) Photon, Electron, Photon and Neutron Interaction Data for Body Tissues, ICRU Report 46. ICRU, Washington DC

  35. Wallace RE, Fan JJ (1999) Dosimetric characterization of a new design 103palladium brachytherapy source. Med Phys 26:2465–2470

    Article  PubMed  CAS  Google Scholar 

  36. Li Z, Palta JR, Fan JJ (2000) Monte Carlo calculations and experimental measurements of dosimetry parameters of a new 103Pd source. Med Phys 27:1108–1112

    Article  PubMed  CAS  Google Scholar 

  37. Nath R, Yue N, Shahnazi K, Bongiorni PJ (2000) Measurement of dose-rate constant for 103Pd seeds with air kerma strength calibration based upon a primary national standard. Med Phys 27:655–658

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sadeghi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s13246-011-0094-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saidi, P., Sadeghi, M., Shirazi, A. et al. ROPES eye plaque brachytherapy dosimetry for two models of 103Pd seeds . Australas Phys Eng Sci Med 34, 223–231 (2011). https://doi.org/10.1007/s13246-011-0069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-011-0069-1

Keywords

Navigation