Skip to main content
Log in

Dosimetric impact of systematic MLC positional errors on step and shoot IMRT for prostate cancer: a planning study

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The positional accuracy of multileaf collimators (MLC) is crucial in ensuring precise delivery of intensity-modulated radiotherapy (IMRT). The aim of this planning study was to investigate the dosimetric impact of systematic MLC positional errors on step and shoot IMRT of prostate cancer. A total of 12 perturbations of MLC leaf banks were introduced to six prostate IMRT treatment plans to simulate MLC systematic positional errors. Dose volume histograms (DVHs) were generated for the extraction of dose endpoint parameters. Plans were evaluated in terms of changes to the defined endpoint dose parameters, conformity index (CI) and healthy tissue avoidance (HTA) to planning target volume (PTV), rectum and bladder. Negative perturbations of MLC had been found to produce greater changes to endpoint dose parameters than positive perturbations of MLC (p < 0.01). Negative and positive asynchronised MLC perturbations of −1 mm resulted in median changes in D95 of −1.2 and 0.9% respectively. Negative and positive synchronised MLC perturbations of 1 mm in one direction resulted in median changes in D95 of −2.3 and 1.8% respectively. Doses to rectum were generally more sensitive to systematic MLC errors compared to bladder (p < 0.01). Negative and positive synchronised MLC perturbations of 1 mm in one direction resulted in median changes in endpoint dose parameters of rectum and bladder from 1.0 to 2.5%. Maximum reduction of −4.4 and −7.3% were recorded for conformity index (CI) and healthy tissue avoidance (HTA) respectively due to synchronised MLC perturbation of 1 mm. MLC errors resulted in dosimetric changes in IMRT plans for prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Teh BS, Amosson CM, Mai WY, McGary J, Grant WH, Butler EB (2004) Intensity modulated radiation therapy (IMRT) in the management of prostate cancer. Cancer Invest 22(6):913–924

    Article  PubMed  CAS  Google Scholar 

  2. Liu Y-M, Shiau C-Y, Lee M-L, Huang P-I, Hsieh C-M, Chen P-H, Lin Y-H, Wang L-W, Yen S-H (2007) The role and strategy of IMRT in radiotherapy of pelvic tumors: dose escalation and critical organ sparing in prostate cancer. Int J Radiat Oncol Biol Phys 67(4):1113–1123

    Article  PubMed  Google Scholar 

  3. Kupelian PA, Ciezki J, Reddy CA, Klein EA, Mahadevan A (2008) Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 71(1):16–22

    Article  PubMed  Google Scholar 

  4. Zietman AL, DeSilvio M, Slater JD, Rossi CJ, Yonemoto LT, Slater JM, Berkey B, Adams JA, Shipley WU (2004) A randomized trial comparing conventional dose (70.2 GyE) and high-dose (79.2 GyE) conformal radiation in early stage adenocarcinoma of the prostate: results of an interim analysis of PROG 95–09. Int J Radiat Oncol Biol Phys 60(1S):131–132

    Google Scholar 

  5. Zelefsky MJ, Fuks Z, Happersett L, Lee HJ, Ling CC, Burman CM, Hunt M, Wolfe T, Venkatraman E, Jackson A, Skwarchuk M, Leibel SA (2000) Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 55(3):241–249

    Article  PubMed  CAS  Google Scholar 

  6. Ashman JB, Zelefsky MJ, Hunt MS, Leibel SA, Fuks Z (2005) Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 63(3):765–771

    Article  PubMed  Google Scholar 

  7. Wang-Chesebro A, Xia P, Coleman J, Akazawa C, Roach Iii M (2006) Intensity-modulated radiotherapy improves lymph node coverage and dose to critical structures compared with three-dimensional conformal radiation therapy in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 66(3):654–662

    Article  PubMed  Google Scholar 

  8. Al-Mamgani A, Heemsbergen WD, Peeters STH, Lebesque JV (2009) Role of intensity-modulated radiotherapy in reducing toxicity in dose escalation for localized prostate cancer. Int J Radiat Oncol Biol Phys 73(3):685–691

    Article  PubMed  Google Scholar 

  9. Luxton G, Hancock SL, Boyer AL (2004) Dosimetry and radiobiologic model comparison of IMRT and 3D conformal radiotherapy in treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 59(1):267–284

    Article  PubMed  Google Scholar 

  10. Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B (2009) Task Group 142 report: quality assurance of medical accelerators. Med Phys 36(9):4197–4212

    Article  PubMed  Google Scholar 

  11. Parsai H, Cho PS, Phillips MH, Giansiracusa RS, Axen D (2003) Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy. Phys Med Biol 48(9):1109–1121

    Article  PubMed  Google Scholar 

  12. LoSasso T, Chui C-S, Ling CC (2001) Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode. Med Phys 28(11):2209–2219

    Article  PubMed  CAS  Google Scholar 

  13. Parent L, Seco J, Evans PM, Dance DR, Fielding A (2006) Evaluation of two methods of predicting MLC leaf positions using EPID measurements. Med Phys 33(9):3174–3182

    Article  PubMed  Google Scholar 

  14. Mu G, Ludlum E, Xia P (2008) Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer. Phys Med Biol 53(1):77–88

    Article  PubMed  CAS  Google Scholar 

  15. Stell AM, Li JG, Zeidan OA, Dempsey JF (2004) An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors. Med Phys 31(6):1593–1602

    Article  PubMed  Google Scholar 

  16. Bayouth JE, Wendt D, Morrill SM (2003) MLC quality assurance techniques for IMRT applications. Med Phys 30(5):743–750

    Article  PubMed  CAS  Google Scholar 

  17. Kung JH, Chen GTY (2000) Intensity modulated radiotherapy dose delivery error from radiation field offset inaccuracy. Med Phys 27(7):1617–1622

    Article  PubMed  CAS  Google Scholar 

  18. Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16(4):577–592

    Article  PubMed  Google Scholar 

  19. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J (1998) American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 25:1773–1829

    Google Scholar 

  20. Dyk JV, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26(2):261–273

    Article  PubMed  Google Scholar 

  21. Feuvret L, Noël G, Mazeron J-J, Bey P (2006) Conformity index: a review. Int J Radiat Oncol Biol Phys 64(2):333–342

    Article  PubMed  Google Scholar 

  22. Van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47(4):1121–1135

    Article  PubMed  Google Scholar 

  23. Verhey LJ (1995) Immobilizing and positioning patients for radiotherapy. Semin Radiat Oncol 5(2):100–114

    Article  PubMed  Google Scholar 

  24. Wu VWC, Kwong DLW, Sham JST (2004) Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother Oncol 71(2):201–206

    Article  PubMed  CAS  Google Scholar 

  25. Budgell GJ, Clarke MF (2008) Analysis of the measurement precision of an amorphous silicon EPID used for MLC leaf position quality control and the long-term calibration stability of an optically controlled MLC. Phys Med Biol 53(15):N297–N306

    Article  PubMed  CAS  Google Scholar 

  26. Mamalui-Hunter M, Li H, Low DA (2008) MLC quality assurance using EPID: a fitting technique with subpixel precision. Med Phys 35(6):2347–2355

    Article  PubMed  Google Scholar 

  27. Boyer A, Biggs P, Galvin J, Klein E, LoSasso T, Low D, Mah K, Yu C (2001) AAPM report 72: basic applications of multileaf collimators, report of Task Group 50. American Association of Physicists in Medicine

Download references

Acknowledgments

The authors acknowledge the assistance of Sara Lyons Hackett and Simon Woodings in the preparation of this manuscript. This research has been supported by an academic Ph.D scholarship from the Malaysian Ministry of Higher Education and the University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ung, N.M., Harper, C.S. & Wee, L. Dosimetric impact of systematic MLC positional errors on step and shoot IMRT for prostate cancer: a planning study. Australas Phys Eng Sci Med 34, 291–298 (2011). https://doi.org/10.1007/s13246-011-0062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-011-0062-8

Keywords

Navigation