Abstract
Objectives and Methods
A variety of benign cystic or “cyst-like” lesions may be encountered during a routine magnetic resonance imaging (MRI) of the knee. These lesions comprise a diverse group of entities from benign cysts to complications of underlying diseases. In addition, normal anatomic bursae and recesses may be misdiagnosed as an intra-articular cystic lesion when they are distended. However, the majority of the aforementioned lesions have characteristic MR appearances that allow a confident diagnosis, thus obviating the need for additional imaging or interventional procedures.
Results
This article includes a comprehensive pictorial essay of the characteristic MRI features of common and uncommon benign cysts and “cyst-like” lesions in and around the knee joint.
Discussion
For accurate assessment of the “cystic structure”, a radiologist should be able to identify typical MRI patterns that contribute in establishing the correct diagnosis and thus guiding specific therapy and avoiding unwarranted interventional procedures such as biopsy or arthroscopy.
Teaching points
• Cystic lesions are common in knee MRI and the commonest, the Baker’s cyst, has an incidence of 38 %.
• Synovial cysts, meniscal cysts, normal knee bursae and recesses have characteristic MR appearances.
• Miscellaneous “cyst-like” lesions may require a more dedicated MR protocol for a correct diagnosis.
Similar content being viewed by others
Introduction
Given the fact that magnetic resonance imaging (MRI) is being performed more frequently for assessment of the knee joint (e.g. post-traumatic, in sport injuries, in rheumatological disorders, in oncological imaging), the number of incidental cystic and “cyst-like” lesions in and around the knee joint found on routine knee MRI scans has also increased [1–4]. The vast majority of these lesions are benign, ranging from benign cysts to complications of underlying diseases and many of them demonstrate characteristic features on MRI, thus allowing a confident diagnosis to be made [1–6]. Knowledge of the common anatomical locations and appearances of bursae, recesses, cysts and ganglia is necessary so that radiologists do not misinterpret these benign entities as soft-tissue tumours [1–8]. It is of paramount importance for the radiologist to be aware of the MRI features because understanding the spectrum of appearances of the various benign cystic lesions is vital for optimal patient management. This article is intended to be a comprehensive pictorial review of the most common and uncommon benign cystic and “cyst-like” lesions in and around the knee joint. For easier classification purposes, benign cysts were subdivided into categories as following: (1) synovial cysts, (2) ganglion cysts, (3) meniscal cysts and (4) intraosseous cysts. Similarly, “cyst-like” lesions were subclassified into the following: (1) normal knee bursae, (2) normal knee recesses and (3) miscellaneous cyst-like lesions.
Benign cysts
Synovial cysts
Synovial cysts are defined as juxta-articular fluid collections that are lined by synovial cells [1, 2]. The synovial lining is the characteristic histological feature that distinguishes them from other juxta-articular fluid collections [1, 2, 6, 8]. From a pathophysiological point of view a synovial cyst represents a focal extension of joint fluid that may extend in any direction and may, or may not, communicate with the joint. They can be encountered as incidental findings in MR examinations, but regarding their aetiology, they have been associated with other underlying knee disorders such as osteoarthritis, trauma, rheumatoid arthritis, gout, systemic lupus erythematosus and juvenile rheumatoid arthritis [1, 2, 4–6]. Although usually asymptomatic, they can manifest with pain and swelling. The most common examples of a synovial cyst in the knee are the popliteal cyst (Baker’s cyst) and the proximal tibiofibular joint (PTFJ) synovial cyst.
The term popliteal cyst is a “misnomer” since it does not represent a true cyst, but actually corresponds to a fluid distension of the gastrocnemius-semimembranosus bursa, which occasionally communicates with the knee joint [6, 8]. Regarding its pathogenesis, a valvular mechanism between the knee joint and the bursa has been implicated, which allows joint fluid to communicate in a unidirectional mode. On MRI, they manifest as well defined unilocular or multilocular cystic masses, located posteromedially, arising between the tendon of the semimembranosus and the medial head of gastrocnemius [1, 2, 4–8]. Baker’s cyst can be effectively diagnosed with MRI since the fluid-distented gastrocnemius-semimembranosus bursa is easily depicted on T2-weighted MR images, especially in the axial plane. Fluid signal intensity is seen in all sequences in cases of popliteal cysts [8, 9]. Nevertheless, complications such as haemorrhage, rupture, the presence of intra-articular loose bodies and synovial proliferative reaction-diseases may produce a more heterogeneous appearance. Differential diagnosis from other cyst-like lesions and soft tissue tumours is thus imperative and requires a dedicated contrast-enhanced MRI examination protocol in the aforementioned cases [8–13]. Increased signal intensity within the cyst on T1-weighted images may appear in an infected or haemorrhagic cyst. The cyst may extend to any direction, but most commonly inferomedially. Lateral or intramuscular extension is observed relatively rare. A ruptured popliteal cyst is efficiently demonstrated as a high signal intensity oedema dispersing into the adjacent soft tissues and fascial planes on fat-suppressed T2-weighted sequences (Fig. 1).
The proximal tibiofibular joint (PTFJ) synovial cyst is believed to represent a joint capsule herniation, due to increased intra-articular pressure [14–16]. On T1-weighted and T2-weighted MR sequences the lesion appears as a homogeneous often fusiform fluid collection in contact with the proximal tibiofibular joint, while a communicating neck leading from the cyst into the PTFJ is sometimes also illustrated [14–16]. Increased signal intensity on T2-weighted images of the peroneally innervated anterior compartment musculature may be present in cases of common peroneal nerve impingement. Erosion of adjacent bone may also be seen in cases of large cysts. Differential diagnosis from soft tissue and nerve sheath tumours with myxomatous or cystic degeneration may be required (Fig. 2).
Ganglion cysts
A ganglion cyst is defined as a benign cystic mass that is surrounded by dense connective tissue, without a synovial lining and is filled with a gelatinous fluid rich in hyaluronic acid and other mucopolysaccharides. Ganglia are traditionally divided into the following categories: intra-articular, extra-articular, intraosseous and (rare) periosteal.
Intra-articular ganglia
They are quite uncommon cystic lesions and typically arise from the cruciate ligaments, most commonly from the anterior cruciate ligament (ACL) [9, 11, 17, 18] In MRI part of the lesion is interspersed within the ACL fibres and it may extend anteriorly towards the Hoffa’s fat pad or posteriorly towards the femoral intercondylar fossa [1, 2, 19]. Rarely it may be demonstrated between the ACL and posterior cruciate ligament (PCL). PCL ganglia have a more typical appearance and present as well-defined multilocular cysts adjacent to and along the dorsal PCL surface [1, 2, 8, 9]. Differential diagnosis should be made from a posteromedial meniscal cyst extending centrally within the joint predominantly posterior to the PCL. Ganglia within Hoffa’s fat pad or in the suprapatellar recess-bursa usually appear as well-defined multilocular cysts and are most commonly encountered anterior to the anterior horn of the lateral meniscus [6, 8, 19]. An intrahoffatic lesion or a synovial lesion such as haemangioma or synovial sarcoma may be misinterpreted as a ganglion cyst within the fat pad and contrast-enhanced MRI is warranted in such cases for differential diagnosis (Figs. 3, 4 and 5).
Extra-articular ganglia
Ganglion cysts may be encountered in any of the extra-articular soft tissues around the knee, including the joint capsule, tendons, ligaments, bursae, muscles and nerves. In rare cases, extra-articular ganglia may communicate with the joint cavity [1, 2, 6–8, 11–13]. On MR images they present as well-defined rounded or lobulated fluid collections, often with associated peripheral fluid-filled pseudopodia and sharply defined internal septations (“bunch of grapes appearance”). On T2-weighted images, ganglia appear with high signal intensity. On T1-weighted images, the signal intensities of ganglia range depending on their protein concentration. Associated bone erosion and pericystic oedema have been reported. The detection on MRI of a possible communication between the ganglion and the joint capsule is of great importance in preoperative planning because of the possibility of recurrence. MRI is also the imaging modality of choice for depicting muscle denervation changes in cases of nerve sheath ganglion cysts [20, 21]. These cysts are most frequently associated with the common peroneal nerve and its branches and nerve compression may result in foot drop and paraesthesia over the dorsum of the foot [20, 21]. MRI can contribute to treatment planning because it allows visualisation of both the cyst and the presence of oedema in the innervated muscles [20, 21]. Detection of MR signs of muscle denervation should be regarded as indicative of surgical nerve decompression. (Figs. 6 and 7).
Intraosseous ganglia
These lesions are located in the epiphyseal-metaphyseal region of long bones, most commonly the tibia, often within subchondral bone, adjacent to a joint or in proximity to ligament insertion sites [7, 17, 18, 22]. Their pathogenesis is unclear and unknown and there is still debate as to whether they are distinct from degenerative, insertional or post-traumatic cysts. Regarding MRI appearance, they manifest as solitary, unilocular or multilocular, and a sclerotic rim is usually present. Differential diagnosis may be necessary from primary epiphyseal bone tumours, such as giant cell tumour, clear cell chondrosarcoma and chondroblastoma and it can also be extremely difficult to differentiate from a simple bone cyst (Fig. 8).
Periosteal ganglia
They are extremely rare and are thought to be produced by mucoid degeneration and cyst formation of the periosteum [1, 2, 6–9]. They are most commonly located in the proximal tibial shaft, in proximity to pes anserinus. On MR images they typically appear as periosteally based, well-defined homogeneous lesions with fluid signal intensity. Superficial cortical erosion and scalloping, as well as reactive new bone formation may be present. Other lesions of periosteal origin, such as periosteal chondroma, subperiosteal hematoma, chronic subperiosteal abscess or malignant soft tissue tumours, mainly when they erode the adjacent bone and cause periosteal reaction, may need differential diagnosis from a periosteal ganglion.
Meniscal cysts
Meniscal cysts are divided into intrameniscal and parameniscal cysts [23–27]. An intrameniscal cyst is a focal collection of fluid located within the meniscus. A parameniscal cyst is a focal joint fluid collection located adjacent to a meniscus. Both types of cysts are associated with a meniscal tear [23–28]. Direct communication with the meniscal tear may or may not be demonstrated on MR images. Meniscal cysts are typically demonstrated in all pulse sequences as well-defined cystic masses with fluid signal intensity [23–28]. Occasionally they may demonstrate isointensity to skeletal muscles on T1-weighted images, due to haemorrhage or high protein content. In addition, low signal intensity on T2-weighted images may be secondary to water resorption by parameniscal tissues with residual desiccated cyst contents or due to haemosiderin deposition. Most parameniscal cysts are lobulated and internally septated and may rarely cause adjacent bone erosion [23–28]. The commonest medial parameniscal cyst is that adjacent to the posterior horn of the meniscus, since tears there are far more common. The commonest location for a lateral paremeniscal cyst is adjacent to the anterior horn or the body of the lateral meniscus. Since the lateral meniscus is not tightly bound to the joint capsule, parameniscal cysts originating from the anterior horn and body of lateral meniscus may penetrate the lateral supporting structures and extend even deep to the iliotibial tract (Figs. 9, 10 and 11).
Intraosseous cysts
Intraosseous cysts can be classified into intraosseous ganglion cysts, subarticular degenerative cysts (geodes) and insertional (avulsion-traction) cysts.
Intraosseous ganglion cysts
These are covered above in the “Intraosseous ganglia” section.
Degenerative or subarticular cysts (geodes)
Geodes are not true cysts, since they do not have an epithelial lining [29–34]. They are usually associated with osteoarthritis and most of the times they are multiple, small cystic lesions located in both opposing sides of weight-bearing regions of the knee joint [29–34]. Common osteoarthritic changes such as osteophyte formation, absence of overlying cartilage, joint space narrowing and presence of marked surrounding bone oedema are common accompanying diagnostic clues in MR diagnosis [29–34]. These features are usually adequate to differentiate geodes from other cystic lesions that can be encountered in the same anatomic area of the bone, such as insertional and ganglion cyst, intraosseous abscess, giant cell tumour, chondroblastoma and chondrosarcoma (Fig. 12).
Insertional cysts
As their name implies, they most likely originate from focal bone resorption due to chronic avulsive and traction stress at the insertional site of the ligament [1, 2, 6–9]. They are most commonly observed at the cruciate or at the meniscotibial ligamentous attachments. Regarding MRI, they are manifested as small, sharply and well defined, usually homogeneous fluid-filled lesions, surrounded by an outer low-signal margin due to fibrous tissue. Most of the times there is no perilesional bone marrow oedema, although it has been described in large insertional cysts, possibly due to bone weakening and microfractures (Fig. 13).
Cyst-like lesions
Normal knee bursae
Numerous bursae can be encountered around the knee joint and their primary action is to reduce friction between adjacent moving structures, such as tendons, ligaments and bone surfaces [6–9, 35, 36]. From a histological point of view they are synovium-lined structures and are usually collapsed but may often contain a small amount of synovial fluid. Typically are not visible on MRI, unless they are inflamed from various causes (hence the term bursitis) [6–9, 35, 36]. In the following classification, an anatomical location-based scheme (anterior-medial-lateral-posterior) is used for descriptional purposes:
Anterior bursitises
Suprapatellar bursitis
The suprapatellar bursa lies between the quadriceps tendon and the femur. It commonly communicates with the knee joint cavity, unless the suprapatellar plica, a normal embryonic remnant, fails to perforate and involute. In such cases, MRI reveals a focal fluid accumulation anterior to the distal part of femur, separated from the knee joint by a thin intact suprapatellar plica [1, 2, 6–9]. MR signal may be heterogeneous in chronic post-traumatic bursitis and differential diagnosis from pigmented villonodular synovitis (PVNS), haemangioma or synovial sarcoma should be made. Loose bodies and free osteochondral fragments may be present within this bursa, if it communicates with the knee joint (Fig. 14).
Prepatellar bursitis
The prepatellar bursa is located anteriorly, between the patella and the subcutaneous tissues, adjacent to the proximal patellar tendon. Prepatellar bursitis is an inflammation of the prepatellar bursa either due to acute trauma (direct fall on to the knee) or to chronic repetitive microtrauma (housemaid’s knee, carpet-layer’s knee) [6, 8–10]. On MRI prepatellar bursitis presents as a focal fluid collection in all pulse sequences anterior to the patella and the superior part of the patellar tendon. However, inflammatory or haemorrhagic bursitis may present as a more complex, poorly defined, septated collection with heterogeneous signal intensity and internal debris (Fig. 15).
Superficial infrapatellar bursitis
The superficial infrapatellar or pretibial bursa is located between the tibial tubercle and the overlying skin. It is an uncommon site for bursitis, but direct trauma or occupational overuse (clergyman’s knee) may result in inflammation and micro-haemorrhage) [1, 2, 6]. The characteristic MRI finding is a focally poorly defined fluid collection anterior to the tibial tubercle.
Deep infrapatellar bursitis
The deep infrapatellar bursa is located between the posterior margin of the distal part of the patellar tendon and the anterior tibia, beneath Hoffa’s fat pad [1, 2, 6, 8, 35]. There is no communication with the knee joint and is usually inflamed in overuse sports injuries, most commonly in runners and jumpers. On MRI a fluid collection is seen between the distal patellar tendon and the tibia. However, a small amount of fluid in the deep infrapatellar bursa may be present in asymptomatic individuals, and for that reason clinical correlation is warranted (Fig. 16).
Medial bursitises
Anserine bursitis (Pes anserinus bursitis)
The anserine bursa lies deep to the pes anserinus, superficial to the tibial insertion of the medial collateral ligament and the medial tibial condyle, and slightly distal to the insertion of the semimembranosus tendon [35–37]. Clinically, anserine bursitis may mimic a medial meniscus tear or injury of the MCL and is more commonly seen as a sports injury in runners [1, 2, 6–9, 35]. Its MR appearance is a homogeneous, ovoid fluid collection in the aforementioned location. The differential diagnosis includes an atypical synovial cyst and a parameniscal cyst, lesions that may also be found in this position. Chronic pes anserinus bursitis is reported more frequently and found in overweight middle-aged to elderly women and in patients with underlying degenerative joint disease or rheumatoid arthritis. Its MRI appearance is less specific. Thickened synovial lining and heterogeneous signal fluid intensity have been reported. The differential diagnosis of chronic pes anserinus bursitis includes PVNS and synovial haemangioma (Fig. 17).
Medial collateral ligament bursitis (MCL bursitis)
The medial collateral ligament bursa lies vertically between the superficial and deep layer of MCL [38–42]. MCL bursitis as an isolated finding is extremely rare, with most cases associated with arthritides and medial intra-articular pathology. MCL bursitis on MR images is demonstrated as a vertically elongated, well-defined fluid collection between the superficial and deep layer of the MCL [38–42]. Separate femoral and tibial components may be observed, and this has also been proved in cadaveric studies. Meniscal cyst and ganglion cyst should also be considered in the differential diagnosis of MCL bursitis (Fig. 18).
Semimembranosus-tibial collateral ligament bursitis
The semimembranosus-tibial collateral ligament (SMTCL) bursa is located between the semimembranosus tendon and the MCL, having a deeper portion extending between the semimembranosus tendon and medial tibial condyle [6, 8]. On MRI, SMTCL bursitis is demonstrated as a longitudinal fluid collection along the semimembranosus tendon, in a pattern surrounding the tendon [6, 8]. On axial images the SMTCL bursitis has the shape of an inverted U and on coronal images it has a semilunar configuration [6, 8]. The deep part is located proximally between the semimembranosus tendon and the medial tibial condyle, adjacent to the posterior horn of the medial meniscus, though the superficial part lies distally between the semimembranosus tendon and the MCL. These two parts are joined along the anterosuperior aspect of the semimembranosus tendon [6, 8]. Differential diagnosis of SMTCL bursitis should be done from a parameniscal cyst, since its proximal end abuts the posterior horn of the medial meniscus (Fig. 19).
Lateral bursitises
Iliotibial bursitis
The iliotibial bursa is located between the distal part of the iliotibial band, near its insertion on Gerdy’s tubercle, and the adjacent tibial surface. It may mimic iliotibial tendinitis and lateral meniscal or lateral collateral ligamentous pathology [1, 2, 6, 8]. On MR images iliotibial bursitis is demonstrated as a well-defined fluid collection between the insertion of the distal iliotibial band and the adjacent bony surface.
Lateral/fibular collateral ligament-biceps femoris bursitis (LCL bursitis)
The fibular collateral ligament (FCL)-biceps femoris bursa is located superficial to the distal FCL and deep to the anterior arm of the long head of the biceps femoris muscle [1, 2, 6, 8]. On axial MR images it is demonstrated as a fluid collection around the FCL, forming an inverted J-shape, whose long arm extends along the lateral aspect of the FCL and the hook is curved around the anterior edge of the FCL. The proximal portion is at the superior edge of the anterior arm of the long head of the biceps femoris muscle and the distal one is at the insertion of the FCL on the fibula head (Fig. 20).
Posterior bursitises
Gastrocnemius-semimembranosus bursitis (Posterior bursitis)
The posteriorly located gastrocnemius-semimembranosus bursa (popliteal or Baker’s cyst) together with its symptomatology is covered above in the synovial cyst section.
In summary, the MR characteristics of the various bursae that can be encountered around the knee joint have been presented in this section. Above and beyond correct diagnosis the radiologist can also be implicated in the clinical management of these conditions. Treatment with ultrasound-guided aspiration and local injection of long-acting analgesic and steroid may relieve symptoms and represent the optimal therapy in cases of bursitis [43–46]. Percutaneous-guided treatments have been used successfully for pain management in bursitis and have been proven effective, thus obviating the need for surgical therapy [43–46].
Normal knee recesses
There are numerous anatomical knee recesses that can be demonstrated in cases of knee effusion and may be misinterpreted as cyst-like lesions [47–50]. Good knowledge of those spaces is essential in order to avoid pitfalls in MRI.
The posterior femoral recesses (subgastrocnemius recesses) are found posteriorly to both femoral condyles and the deep surface of the lateral and medial heads of gastrocnemius.
The posterior capsular recesses (in the midline) behind the PCL, may be identified as an extension of the medial femorotibial compartment.
The subpopliteal recess is demonstrated between the popliteus tendon and the posterior horn of the lateral meniscus.
The suprahoffatic recess is at the superior part of the Hoffa’s fat pad, close to the inferior border of the patella.
The infrahoffatic recess lies anterior to the inferior portion of the infrapatellar plica (also called ligamentum mucosum).
The anterior tibial recess, is a normal capsular recess immediately anterior to the proximal tibia.
The central synovial recess lies between the patella/patellar ligaments and the anterior aspect of the femur.
The parameniscal recess lies just superior and inferior to the level of the lateral meniscus in contact with the lateral femoral and tibial condyle (Figs. 21 and 22).
Other miscellaneous cyst-like lesions
A variety of “cystic” lesions can be encountered in and around the knee joint that may complicate the differential diagnosis even more [1, 2, 6–11]. The most common benign non-tumoral are the following:
Popliteal artery aneurysms present on MR images with variable signal intensity depending on flow characteristics and pulse sequences [51, 52]. They are typically situated within the popliteal fossa. A laminated MR appearance consistent with multilayered thrombus and occasionally rim-like calcification may also be demonstrated. The lesion shows continuity with the popliteal artery, which is a hallmark in diagnosis. Popliteal vein varices are focal dilatations of the popliteal vein [1, 2, 6–11]. They present on MR images as lobulated masses in continuity with the popliteal vein. Lymph nodes located in and around the popliteal fossa may also manifest as cyst-like structures [1, 2, 6–11]. Knowledge of their location as well as of the normal MR appearance of the lymph node fatty hillum aids in the differential diagnosis. Haematomas may simulate a cyst but can be differentiated by its signal intensity which depends on blood products’ age (haemoglobin degradation products) [53–55]. Abscesses that can also mimic cysts are associated with infection and inflammation in the surrounding soft tissues and occasionally underlying osteomyelitis [55–57]. Contrast enhancement is necessary for the correct diagnosis and for unmasking a possible sinus tract (Figs. 23, 24 and 25).
In addition, administration of intravenous contrast is primarily helpful in the evaluation of soft tissue masses and particularly in differentiating cysts from malignant pseudocystic conditions [9–13]. Solid tumours with central necrosis, cystic degeneration or myxoid stroma such as synovial sarcoma, dedifferentiated sarcoma, myxoid liposarcoma, metastases and the benign synovial haemangioma may have homogeneously high signal on T2-weighted images mimicking a cyst, but they enhance after contrast administration contrary to the cysts (Fig. 26).
Conclusion
Benign cystic and “cyst-like” lesions are a common finding inside and around the knee joint. MRI is an excellent method for demonstrating and differentiating these lesions. A radiologist should be able to identify typical MRI patterns that contribute in establishing the correct diagnosis and thus guiding specific therapy and avoiding unwarranted interventional procedures such as biopsy or arthroscopy.
References
Beaman FD, Peterson JJ (2007) MR imaging of cysts, ganglia, and bursae about the knee. Radiol Clin North Am 45:969–982
Beaman FD, Peterson JJ (2007) MR imaging of cysts, ganglia, and bursae about the knee. Magn Reson Imaging Clin N Am 15:39–52
Ghazikhanian V, Beltran J, Nikac V, Feldman M, Bencardino JT (2012) Tibial tunnel and pretibial cysts following ACL graft reconstruction: MR imaging diagnosis. Skeletal Radiol 41:1375–1379
Guermazi A, Hayashi D, Roemer FW et al (2010) Cyst-like lesions of the knee joint and their relation to incident knee pain and development of radiographic osteoarthritis: the MOST study. Osteoarthr Cartil 18:1386–1392
Janzen DL, Peterfy CG, Forbes JR, Tirman PF, Genant HK (1994) Cystic lesions around the knee joint: MR imaging findings. AJR Am J Roentgenol 163:155–161
McCarthy CL, McNally EG (2004) The MRI appearance of cystic lesions around the knee. Skeletal Radiol 33:187–209
Williams HJ, Davies AM, Allen G, Evans N, Mangham DC (2004) Imaging features of intraosseous ganglia: a report of 45 cases. Eur Radiol 14:1761–1769
Marra MD, Crema MD, Chung M et al (2008) MRI features of cystic lesions around the knee. Knee 15:423–438
Stacy GS, Kapur A (2011) Mimics of bone and soft tissue neoplasms. Radiol Clin North Am 49:1261–1286
Stein-Wexler R (2009) MR imaging of soft tissue masses in children. Magn Reson Imaging Clin N Am 17:489–507
Subhas N, Bui KL, Sundaram M, Ilaslan H, Recht MP (2009) Incidental tumor and tumor-like lesions around the knee. Semin Musculoskelet Radiol 13:353–370
Chung CB, Boucher R, Resnick D (2009) MR imaging of synovial disorders of the knee. Semin Musculoskelet Radiol 13:303–325
Papp DF, Khanna AJ, McCarthy EF, Carrino JA, Farber AJ, Frassica FJ (2007) Magnetic resonance imaging of soft-tissue tumors: determinate and indeterminate lesions. J Bone Joint Surg Am 89(Suppl 3):103–115
Jerome D, McKendry R (2000) Synovial cyst of the proximal tibiofibular joint. J Rheumatol 27:1096–1098
Mortazavi SM, Farzan M, Asadollahi S (2006) Proximal tibiofibular joint synovial cyst–one pathology with three different presentations. Knee Surg Sports Traumatol Arthrosc 14:875–879
Pećina HI, Borić I, Pećina TC, Smoljanović T, Pećina M (2008) Double synovial cyst of the proximal tibiofibular joint confirmed by MRI as a cause of the peroneal tunnel syndrome. Acta Chir Orthop Traumatol Cech 75:301–305
Battaglia TC, Freilich AM, Diduch DR (2007) An intra-articular knee cyst in a 2-year-old associated with an aberrant anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 15:36–38
Krudwig WK, Schulte KK, Heinemann C (2004) Intra-articular ganglion cysts of the knee joint: a report of 85 cases and review of the literature. Knee Surg Sports Traumatol Arthrosc 12:123–129
Ozkur A, Adaletli I, Sirikci A, Kervancioglu R, Bayram M (2005) Hoffa’s recess in the infrapatellar fat pad of the knee on MR imaging. Surg Radiol Anat 27:61–63
Yazid Bajuri M, Tan BC, Das S, Hassan S, Subanesh S (2011) Compression neuropathy of the common peroneal nerve secondary to a ganglion cyst. Clin Ter 162:549–552
Rawal A, Ratnam KR, Yin Q, Sinopidis C, Frostick SP (2004) Compression neuropathy of common peroneal nerve caused by an extraneural ganglion: a report of two cases. Microsurgery 24:63–66
Başbozkurt M, Hapa O, Demiralp B (2011) Distal femoral intraosseous ganglia: cause or result of a degenerative process: 17-year follow-up of a case. Musculoskelet Surg 95:147–150
Anderson JJ, Connor GF, Helms CA (2010) New observations on meniscal cysts. Skeletal Radiol 39:1187–1191
De Smet AA, Graf BK, del Rio AM (2011) Association of parameniscal cysts with underlying meniscal tears as identified on MRI and arthroscopy. AJR Am J Roentgenol 196:W180–W186
McKnight A, Southgate J, Price A, Ostlere S (2010) Meniscal tears with displaced fragments: common patterns on magnetic resonance imaging. Skeletal Radiol 39:279–283
Quatman CE, Hettrich CM, Schmitt LC, Spindler KP (2011) The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med 39:1557–1568
Vande Berg BC, Malghem J, Poilvache P, Maldague B, Lecouvet FE (2005) Meniscal tears with fragments displaced in notch and recesses of knee: MR imaging with arthroscopic comparison. Radiology 234:842–850
Wyss JF, Foye PM, Stitik TP (2010) An infected, extruded lateral meniscal cyst as a cause of knee symptoms. Am J Phys Med Rehabil 89:175–176
Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB (2006) MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthr Cartil 14:1081–1085
Choi JA, Gold GE (2011) MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am 19:249–282
Guermazi A, Zaim S, Taouli B, Miaux Y, Peterfy CG, Genant HG (2003) MR findings in knee osteoarthritis. Eur Radiol 13:1370–1386
Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12:177–190
Huétink K, Nelissen RG, Watt I, van Erkel AR, Bloem JL (2010) Localized development of knee osteoarthritis can be predicted from MR imaging findings a decade earlier. Radiology 256:536–546
Hayashi D, Xu L, Roemer FW et al (2012) Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis. Radiology 263:206–215
Chatra PS (2012) Bursae around the knee joints. Indian J Radiol Imaging 22:27–30
Nouri H, Ben Hmida F, Ouertatani M et al (2010) Tumour-like lesions of the infrapatellar fat pad. Knee Surg Sports Traumatol Arthrosc 18:1391–1394
Maheshwari AV, Muro-Cacho CA, Pitcher JD Jr (2007) Pigmented villonodular bursitis/diffuse giant cell tumor of the pes anserine bursa: a report of two cases and review of literature. Knee 14:402–407
De Maeseneer M, Shahabpour M, Pouders C (2010) MRI spectrum of medial collateral ligament injuries and pitfalls in diagnosis. JBR-BTR 93:97–103
De Maeseneer M, Shahabpour M, Vanderdood K, Van Roy F, Osteaux M (2002) Medial meniscocapsular separation: MR imaging criteria and diagnostic pitfalls. Eur J Radiol 41:242–252
Kramer J, White LM, Recht MP (2009) MR imaging of the extensor mechanism. Semin Musculoskelet Radiol 13:384–401
Nandi S, Parker R (2012) Deep medial collateral ligament tear during knee arthroscopy. J Knee Surg 25:79–81
Schein A, Matcuk G, Patel D et al (2012) Structure and function, injury, pathology, and treatment of the medial collateral ligament of the knee. Emerg Radiol 19:489–498
Miller JC, Palmer WE, Goroll AH, Thrall JH, Uppot RN (2009) Anesthetic and steroid injections for musculoskeletal pain. J Am Coll Radiol 6:806–808
Di Sante L, Paoloni M, Ioppolo F, Dimaggio M, Di Renzo S, Santilli V (2010) Ultrasound-guided aspiration and corticosteroid injection of Baker’s cysts in knee osteoarthritis: a prospective observational study. Am J Phys Med Rehabil 89:970–975
Jose J, Schallert E, Lesniak B (2011) Sonographically guided therapeutic injection for primary medial (tibial) collateral bursitis. J Ultrasound Med 30:257–261
del Cura JL (2008) Ultrasound-guided therapeutic procedures in the musculoskeletal system. Curr Probl Diagn Radiol 37:203–218
Aydingöz U, Oguz B, Aydingöz O et al (2005) Recesses along the posterior margin of the infrapatellar (Hoffa’s) fat pad: prevalence and morphology on routine MR imaging of the knee. Eur Radiol 15:988–994
Fenn S, Datir A, Saifuddin A (2009) Synovial recesses of the knee: MR imaging review of anatomical and pathological features. Skeletal Radiol 38:317–328
García-Valtuille R, Abascal F, Cerezal L et al (2002) Anatomy and MR imaging appearances of synovial plicae of the knee. Radiographics 22:775–784
Maurel B, Le Corroller T, Cohen M et al (2010) Infrapatellar fat pad: anterior crossroads of the knee. J Radiol 91:841–855
Holden A, Merrilees S, Mitchell N, Hill A (2008) Magnetic resonance imaging of popliteal artery pathologies. Eur J Radiol 67:159–168
Wright LB, Matchett WJ, Cruz CP et al (2004) Popliteal artery disease: diagnosis and treatment. Radiographics 24:467–479
Bush CH (2000) The magnetic resonance imaging of musculoskeletal hemorrhage. Skeletal Radiol 29:1–9
Oka K, Yakushiji T, Sato H et al (2008) Ability of diffusion-weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors. J Magn Reson Imaging 28:1195–1200
Recht MP, Kramer J (2002) MR imaging of the postoperative knee: a pictorial essay. Radiographics 22:765–774
Martí-Bonmatí L, Aparisi F, Poyatos C, Vilar J (1993) Brodie abscess: MR imaging appearance in 10 patients. J Magn Reson Imaging 3:543–546
Soldatos T, Durand DJ, Subhawong TK, Carrino JA, Chhabra A (2012) Magnetic resonance imaging of musculoskeletal infections: systematic diagnostic assessment and key points. Acad Radiol 19:1434–1443
Conflict of interest
None.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
About this article
Cite this article
Perdikakis, E., Skiadas, V. MRI characteristics of cysts and “cyst-like” lesions in and around the knee: what the radiologist needs to know. Insights Imaging 4, 257–272 (2013). https://doi.org/10.1007/s13244-013-0240-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13244-013-0240-1