Skip to main content
Log in

Acausal Modelling of Advanced-Stage Heart Failure and the Istanbul Heart Ventricular Assist Device Support with Patient Data

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Background

In object-oriented or acausal modelling, components of the model can be connected topologically, following the inherent structure of the physical system, and system equations can be formulated automatically. This technique allows individuals without a mathematics background to develop knowledge-based models and facilitates collaboration in multidisciplinary fields like biomedical engineering. This study conducts a preclinical evaluation of a ventricular assist device (VAD) in assisting advanced-stage heart failure patients in an acausal modelling environment.

Methods

A comprehensive object-oriented model of the cardiovascular system with a VAD is developed in MATLAB/SIMSCAPE, and its hemodynamic behaviour is studied. An analytically derived pump model is calibrated for the experimental prototype of the Istanbul Heart VAD. Hemodynamics are produced under healthy, diseased, and assisted conditions. The study features a comprehensive collection of advanced-stage heart failure patients’ data from the literature to identify parameters for disease modelling and to validate the resulting hemodynamics.

Results

Regurgitation, suction, and optimal speeds are identified, and trends in different hemodynamic parameters are observed for the simulated pathophysiological conditions. Using pertinent parameters in disease modelling allows for more accurate results compared to the traditional approach of arbitrary reduction in left ventricular contractility to model dilated cardiomyopathy.

Conclusion

The current research provides a comprehensive and validated framework for the preclinical evaluation of cardiac assist devices. Due to its object-oriented nature, the featured model is readily modifiable for other cardiovascular diseases for studying the effect of pump operating conditions on hemodynamics and vice versa in silico and hybrid mock circulatory loops. The work also provides a potential teaching tool for understanding the pathophysiology of heart failure, diagnosis rationale, and degree of assist requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hakman, M., and T. Groth. Object-oriented biomedical system modeling—the rationale. Comput. Methods Programs Biomed. 59(1):1–17, 1999. https://doi.org/10.1016/s0169-2607(98)00097-2.

    Article  CAS  PubMed  Google Scholar 

  2. Kofránek, J., M. Mateják, P. Privitzer, and M. Tribula. Causal or acausal modeling: labour for humans or labour for machines. In: Technical Computing Prague, pp. 1–16, 2008.

  3. Shi, Y., P. Lawford, and R. Hose. Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMed. Eng. OnLine. 10(1):33, 2011. https://doi.org/10.1186/1475-925X-10-33.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Son, J., D. Du, and Y. Du. Modelling and control of a failing heart managed by a left ventricular assist device. Biocybern. Biomed. Eng. 40(1):559–573, 2020. https://doi.org/10.1016/j.bbe.2020.01.014.

    Article  Google Scholar 

  5. Seongjin, C., J. E. Antaki, R. Boston, and D. Thomas. A sensorless approach to control of a turbodynamic left ventricular assist system. IEEE Trans. Control Syst. Technol. 9(3):473–482, 2001. https://doi.org/10.1109/87.918900.

    Article  Google Scholar 

  6. Faragallah, G., Y. Wang, E. Divo, and M. Simaan. A new control system for left ventricular assist devices based on patient-specific physiological demand. Inverse Probl. Sci. Eng. 20(5):721–734, 2012. https://doi.org/10.1080/17415977.2012.667092.

    Article  CAS  Google Scholar 

  7. Yuan, V., A. Verma, N. K. Schiavone, D. N. Rosenthal, and A. L. Marsden. A mechanistic lumped parameter model of the Berlin Heart EXCOR to analyze device performance and physiologic interactions. Cardiovasc. Eng. Technol. 2022. https://doi.org/10.1007/s13239-021-00603-1.

    Article  PubMed  Google Scholar 

  8. Granegger, M., H. Dave, W. Knirsch, B. Thamsen, M. Schweiger, and M. Hübler. A valveless pulsatile pump for the treatment of heart failure with preserved ejection fraction: a simulation study. Cardiovasc. Eng. Technol. 10(1):69–79, 2019. https://doi.org/10.1007/s13239-018-00398-8.

    Article  PubMed  Google Scholar 

  9. Prather, R., E. Divo, A. Kassab, and W. DeCampli. In silico analysis of outflow graft implantation orientation and cerebral thromboembolism incidence for full LVAD support. Comput. Methods Biomech. Biomed. Eng. 25(11):1249–1261, 2022. https://doi.org/10.1080/10255842.2021.2005789.

    Article  Google Scholar 

  10. de Canete, J. F., P. D. Saz-Orozco, D. Moreno-Boza, and E. Duran-Venegas. Object-oriented modeling and simulation of the closed loop cardiovascular system by using SIMSCAPE. Comput. Biol. Med. 43(4):323–333, 2013. https://doi.org/10.1016/j.compbiomed.2013.01.007.

    Article  PubMed  Google Scholar 

  11. Rosalia, L., C. Ozturk, D. Van Story, M. A. Horvath, and E. T. Roche. Object-oriented lumped-parameter modeling of the cardiovascular system for physiological and pathophysiological conditions. Adv. Theory Simul. 4(3):2000216, 2021. https://doi.org/10.1002/adts.202000216.

    Article  Google Scholar 

  12. Rosalia, L., C. Ozturk, and E. T. Roche. Lumped-parameter and finite element modeling of heart failure with preserved ejection fraction. J. Vis. Exp. 2021. https://doi.org/10.3791/62167.

    Article  PubMed  Google Scholar 

  13. Rosalia, L., C. Ozturk, J. Coll-Font, Y. Fan, Y. Nagata, M. Singh, D. Goswami, A. Mauskapf, S. Chen, R. A. Eder, E. M. Goffer, J. H. Kim, S. Yurista, B. P. Bonner, A. N. Foster, R. A. Levine, E. R. Edelman, M. Panagia, J. L. Guerrero, E. T. Roche, and C. T. Nguyen. A soft robotic sleeve mimicking the haemodynamics and biomechanics of left ventricular pressure overload and aortic stenosis. Nat. Biomed. Eng. 6(10):1134–1147, 2022. https://doi.org/10.1038/s41551-022-00937-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ozturk, C., L. Rosalia, and E. T. Roche. A multi-domain simulation study of a pulsatile-flow pump device for heart failure with preserved ejection fraction. Front. Physiol. 2022. https://doi.org/10.3389/fphys.2022.815787.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shi, Y., and T. Korakianitis. Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device. Artif. Organs. 30(12):929–948, 2006. https://doi.org/10.1111/j.1525-1594.2006.00326.x.

    Article  PubMed  Google Scholar 

  16. Shi, Y., and T. Korakianitis. Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps. Comput. Biol. Med. 93:127–138, 2018. https://doi.org/10.1016/j.compbiomed.2017.12.012.

    Article  PubMed  Google Scholar 

  17. Klabunde, R. Cardiovascular Physiology Concepts. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2011.

    Google Scholar 

  18. Bozkurt, S., W. Paracha, K. Bakaya, and S. Schievano. Patient-specific modelling and parameter optimisation to simulate dilated cardiomyopathy in children. Cardiovasc. Eng. Technol. 2022. https://doi.org/10.1007/s13239-022-00611-9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Avanzolini, G., P. Barbini, A. Cappello, and G. Cevenini. CADCS simulation of the closed-loop cardiovascular system. Int. J. Biomed. Comput. 22(1):39–49, 1988. https://doi.org/10.1016/0020-7101(88)90006-2.

    Article  CAS  PubMed  Google Scholar 

  20. Sagawa, K. Cardiac Contraction and the Pressure-Volume Relationship. Oxford: Oxford University Press, 1988.

    Google Scholar 

  21. Campbell, K. B., J. A. Ringo, Y. Wakao, P. A. Klavano, and J. E. Alexander. Internal capacitance and resistance allow prediction of right ventricle outflow. Am. J. Physiol. 243(1):H99–H112, 1982. https://doi.org/10.1152/ajpheart.1982.243.1.H99.

    Article  CAS  PubMed  Google Scholar 

  22. Capoccia, M. Review of mathematical modelling of the interactions between left ventricular assist devices and the cardiovascular system with a simulation based approach as a tool for training and preoperative planning. In: Cardiovascular and Pulmonary Artificial Organs: Educational Training Simulators, edited by C. De Lazzari, and M. Pirtskhalava. Roma: CNR Edizioni, 2017.

    Google Scholar 

  23. Schima, H., J. Honigschnabel, W. Trubel, and H. Thoma. Computer simulation of the circulatory system during support with a rotary blood pump. ASAIO Trans. 36(3):M252–M254, 1990.

    CAS  PubMed  Google Scholar 

  24. Ozturk, C., I. B. Aka, and I. Lazoglu. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. Int. J. Artif. Organs. 41(11):730–737, 2018. https://doi.org/10.1177/0391398818785558.

    Article  PubMed  Google Scholar 

  25. Lazoglu, I., D. S. Kucukaksu, C. Ozturk, I. B. Aka, V. Bakuy, N. Arat, O. Yalcin, E. Ugurel, P. Celikbilek Erkasap, E. Aksoy, and S. Ruacan. A short-term in vivo evaluation of the Istanbul Heart Left Ventricular Assist Device in a pig model. Exp. Clin. Transplant. 2019. https://doi.org/10.6002/ect.2019.0110.

    Article  PubMed  Google Scholar 

  26. Choi, S. Modeling and Control of Left Ventricular Assist System. Pittsburgh: University of Pittsburgh, 1998.

    Google Scholar 

  27. Comunale, G., P. Peruzzo, B. Castaldi, R. Razzolini, G. Di Salvo, M. A. Padalino, and F. M. Susin. Understanding and recognition of the right ventricular function and dysfunction via a numerical study. Sci. Rep. 11(1):3709, 2021. https://doi.org/10.1038/s41598-021-82567-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klingensmith, M. E. The Washington Manual of Surgery. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008. (in English)

    Google Scholar 

  29. Barnea, O., and N. Sheffer. A computer model for analysis of fluid resuscitation. Comput. Biol. Med. 23(6):443–454, 1993. https://doi.org/10.1016/0010-4825(93)90092-f.

    Article  CAS  PubMed  Google Scholar 

  30. Nauta, J. F., Y. M. Hummel, J. Tromp, W. Ouwerkerk, P. van der Meer, X. Jin, C. S. P. Lam, J. J. Bax, M. Metra, N. J. Samani, P. Ponikowski, K. Dickstein, S. D. Anker, C. C. Lang, L. L. Ng, F. Zannad, G. S. Filippatos, D. J. van Veldhuisen, J. P. van Melle, and A. A. Voors. Concentric vs. eccentric remodelling in heart failure with reduced ejection fraction: clinical characteristics, pathophysiology and response to treatment. Eur. J. Heart Fail. 22(7):1147–1155, 2020. https://doi.org/10.1002/ejhf.1632.

    Article  CAS  PubMed  Google Scholar 

  31. Pak, P. H., W. L. Maughan, K. L. Baughman, and D. A. Kass. Marked discordance between dynamic and passive diastolic pressure–volume relations in idiopathic hypertrophic cardiomyopathy. Circulation. 94(1):52–60, 1996. https://doi.org/10.1161/01.CIR.94.1.52.

    Article  CAS  PubMed  Google Scholar 

  32. O’Neill, B. Some useful moment results in sampling problems. Am. Stat. 68(4):282–296, 2014. https://doi.org/10.1080/00031305.2014.966589.

    Article  Google Scholar 

  33. Ishihara, H., M. Yokota, T. Sobue, and H. Saito. Relation between ventriculoarterial coupling and myocardial energetics in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 23(2):406–416, 1994. https://doi.org/10.1016/0735-1097(94)90428-6.

    Article  CAS  PubMed  Google Scholar 

  34. Senzaki, H., B. Fetics, C.-H. Chen, and D. A. Kass. Comparison of ventricular pressure relaxation assessments in human heart failure: quantitative influence on load and drug sensitivity analysis. J. Am. Coll. Cardiol. 34(5):1529–1536, 1999.

    Article  CAS  PubMed  Google Scholar 

  35. Warriner, D., A. Brown, S. Varma, P. Sheridan, P. Lawford, D. Hose, A. Al-Mohammad, and Y. Shi. Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure–volume loops. PLoS ONE. 9:e114153, 2014. https://doi.org/10.1371/journal.pone.0114153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carroll, J. D., S. Shroff, P. Wirth, M. Halsted, and S. I. Rajfer. Arterial mechanical properties in dilated cardiomyopathy. Aging and the response to nitroprusside. J. Clin. Investig. 87(3):1002–1009, 1991. https://doi.org/10.1172/jci115058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stevenson, L. W., D. Bellil, M. Grover-Mckay, R. C. Brunken, M. Schwaiger, J. H. Tillisch, and H. R. Schelbert. Effects of afterload reduction (diuretics and vasodilators) on left ventricular volume and mitral regurgitation in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 60(8):654–658, 1987. https://doi.org/10.1016/0002-9149(87)90376-6.

    Article  CAS  PubMed  Google Scholar 

  38. Ribner, H. S., D. A. Plucinski, A. M. Hsieh, D. Bresnahan, A. Molteni, J. Askenazi, and M. Lesch. Acute effects of digoxin on total systemic vascular resistance in congestive heart failure due to dilated cardiomyopathy: a hemodynamic-hormonal study. Am. J. Cardiol. 56(13):896–904, 1985. https://doi.org/10.1016/0002-9149(85)90778-7.

    Article  CAS  PubMed  Google Scholar 

  39. Merillon, J. P., G. Fontenier, J. F. Lerallut, M. Y. Jaffrin, J. Chastre, P. Assayag, G. Motte, and R. Gourgon. Aortic input impedance in heart failure: comparison with normal subjects and its changes during vasodilator therapy. Eur. Heart J. 5(6):447–455, 1984. https://doi.org/10.1093/oxfordjournals.eurheartj.a061690.

    Article  CAS  PubMed  Google Scholar 

  40. Bombardini, T., M. F. Costantino, R. Sicari, Q. Ciampi, L. Pratali, and E. Picano. End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. BioMed. Res. Int. 2013:235194, 2013. https://doi.org/10.1155/2013/235194.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Kussmaul, and A. Noordergraaf. Estimation of total systemic arterial compliance in humans. J. Appl. Physiol. (1985). 69(1):112–119, 1990. https://doi.org/10.1152/jappl.1990.69.1.112.

    Article  CAS  PubMed  Google Scholar 

  42. Cotter, G., Y. Moshkovitz, E. Kaluski, O. Milo, Y. Nobikov, A. Schneeweiss, R. Krakover, and Z. Vered. The role of cardiac power and systemic vascular resistance in the pathophysiology and diagnosis of patients with acute congestive heart failure. Eur. J. Heart Fail. 5(4):443–451, 2003. https://doi.org/10.1016/S1388-9842(03)00100-4.

    Article  PubMed  Google Scholar 

  43. Her, A. Y., J. Y. Kim, E. Y. Choi, S. A. Kim, R. S. Jae, C. Y. Shim, S. M. Kang, J. W. Ha, and N. Chung. Value of ventricular stiffness index and ventriculoarterial interaction in patients with nonischemic dilated cardiomyopathy. Circ. J. 73(9):1683–1690, 2009. https://doi.org/10.1253/circj.cj-09-0046.

    Article  PubMed  Google Scholar 

  44. Chemla, D., J. L. Hébert, C. Coirault, K. Zamani, I. Suard, P. Colin, and Y. Lecarpentier. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am. J. Physiol. 274(2):H500–H505, 1998. https://doi.org/10.1152/ajpheart.1998.274.2.H500.

    Article  CAS  PubMed  Google Scholar 

  45. Pellegrini, P., A. Rossi, M. Pasotti, C. Raineri, M. Cicoira, S. Bonapace, F. L. Dini, P. L. Temporelli, C. Vassanelli, R. Vanderpool, R. Naeije, and S. Ghio. Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest. 145(5):1064–1070, 2014. https://doi.org/10.1378/chest.13-1510.

    Article  PubMed  Google Scholar 

  46. Son, J., D. Du, and Y. Du. Stochastic modeling and dynamic analysis of the cardiovascular system with rotary left ventricular assist devices. Math. Probl. Eng. 2019:7179317, 2019. https://doi.org/10.1155/2019/7179317.

    Article  Google Scholar 

  47. Schreuder, J. J., F. H. van der Veen, E. T. van der Velde, F. Delahaye, O. Alfieri, O. Jegaden, R. Lorusso, J. R. C. Jansen, S. A. A. P. Hoeksel, G. Finet, M. Volterrani, H.-G. Kaulbach, J. Baan, and H. J. J. Wellens. Left ventricular pressure–volume relationships before and after cardiomyoplasty in patients with heart failure. Circulation. 96(9):2978–2986, 1997. https://doi.org/10.1161/01.CIR.96.9.2978.

    Article  CAS  PubMed  Google Scholar 

  48. Berk, F., S. Isgoren, H. Demir, G. Kozdag, D. Ural, and B. Komsuoglu. Evaluation of left ventricular function and volume in patients with dilated cardiomyopathy: gated myocardial single-photon emission tomography (SPECT) versus echocardiography. Ann. Saudi Med. 25(3):198–204, 2005. https://doi.org/10.5144/0256-4947.2005.198.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Suzuki, J.-I., G. R. Caputo, T. Masui, J.-M. Chang, M. O’Sullivan, and C. B. Higgins. Assessment of right ventricular diastolic and systolic function in patients with dilated cardiomyopathy using cine magnetic resonance imaging. Am. Heart J. 122(4, Part1):1035–1040, 1991. https://doi.org/10.1016/0002-8703(91)90469-X.

    Article  CAS  PubMed  Google Scholar 

  50. Bielecka-Dabrowa, A., S. von Haehling, W. S. Aronow, M. I. Ahmed, J. Rysz, and M. Banach. Heart failure biomarkers in patients with dilated cardiomyopathy. Int. J. Cardiol. 168(3):2404–2410, 2013. https://doi.org/10.1016/j.ijcard.2013.01.157.

    Article  PubMed  Google Scholar 

  51. D’Andrea, A., G. Salerno, R. Scarafile, L. Riegler, R. Gravino, F. Castaldo, R. Cocchia, G. Limongelli, M. Romano, P. Calabrò, G. Nigro, S. Cuomo, E. Bossone, P. Caso, and R. Calabrò. Right ventricular myocardial function in patients with either idiopathic or ischemic dilated cardiomyopathy without clinical sign of right heart failure: effects of cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 32(8):1017–1029, 2009. https://doi.org/10.1111/j.1540-8159.2009.02434.x.

    Article  PubMed  Google Scholar 

  52. Tachi, M., Y. Amano, K. Inui, M. Takeda, F. Yamada, K. Asai, and S. Kumita. Relationship of postcontrast myocardial T1 value and delayed enhancement to reduced cardiac function and serious arrhythmia in dilated cardiomyopathy with left ventricular ejection fraction less than 35. Acta Radiol. 57(4):430–436, 2016. https://doi.org/10.1177/0284185115580840.

    Article  PubMed  Google Scholar 

  53. Birks, E. J., S. G. Drakos, S. R. Patel, B. D. Lowes, C. H. Selzman, R. C. Starling, J. Trivedi, M. S. Slaughter, P. Alturi, D. Goldstein, S. Maybaum, J. Y. Um, K. B. Margulies, J. Stehlik, C. Cunningham, D. J. Farrar, and J. E. Rame. Prospective multicenter study of myocardial recovery using left ventricular assist devices [RESTAGE-HF (Remission from Stage D Heart Failure)]. Circulation. 142(21):2016–2028, 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.046415.

    Article  PubMed  Google Scholar 

  54. Streitner, F., T. Herrmann, J. Kuschyk, S. Lang, C. Doesch, T. Papavassiliu, I. Streitner, C. Veltmann, D. Haghi, and M. Borggrefe. Impact of shocks on mortality in patients with ischemic or dilated cardiomyopathy and defibrillators implanted for primary prevention. PLoS ONE. 8(5):e63911, 2013. https://doi.org/10.1371/journal.pone.0063911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ortega, A., E. Tarazón, C. Gil-Cayuela, M. García-Manzanares, L. Martínez-Dolz, F. Lago, J. R. González-Juanatey, J. Cinca, E. Jorge, M. Portolés, E. Roselló-Lletí, and M. Rivera. Intercalated disc in failing hearts from patients with dilated cardiomyopathy: its role in the depressed left ventricular function. PLoS ONE. 12(9):e0185062, 2017. https://doi.org/10.1371/journal.pone.0185062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sato, H., M. Hori, H. Ozaki, H. Yokoyama, K. Imai, M. Morikawa, H. Takeda, M. Inoue, and T. Kamada. Exercise-induced upward shift of diastolic left ventricular pressure–volume relation in patients with dilated cardiomyopathy. Effects of beta-adrenoceptor blockade. Circulation. 88(5):2215–2223, 1993. https://doi.org/10.1161/01.CIR.88.5.2215.

    Article  CAS  PubMed  Google Scholar 

  57. Uriel, N., D. Burkhoff, J. D. Rich, S. G. Drakos, J. J. Teuteberg, T. Imamura, D. Rodgers, J. Raikhelkar, E. E. Vorovich, C. H. Selzman, G. Kim, and G. Sayer. Impact of hemodynamic ramp test-guided HVAD speed and medication adjustments on clinical outcomes. Circ. Heart Fail. 12(4):e006067, 2019. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006067.

    Article  PubMed  Google Scholar 

  58. Uriel, N., G. Sayer, K. Addetia, S. Fedson, G. H. Kim, D. Rodgers, E. Kruse, K. Collins, S. Adatya, N. Sarswat, U. P. Jorde, C. Juricek, T. Ota, V. Jeevanandam, D. Burkhoff, and R. M. Lang. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail. 4(3):208–217, 2016. https://doi.org/10.1016/j.jchf.2015.10.001.

    Article  PubMed  Google Scholar 

  59. Aune, E., M. Bækkevar, O. Rødevand, and J. E. Otterstad. Reference values for left ventricular volumes with real-time 3-dimensional echocardiography. Scand. Cardiovasc. J. 44(1):24–30, 2010. https://doi.org/10.3109/14017430903114446.

    Article  PubMed  Google Scholar 

  60. Hall, J. E., and M. E. Hall. Guyton and Hall Textbook of Medical Physiology e-Book. Amsterdam: Elsevier Health Sciences, 2020.

    Google Scholar 

  61. Goodman, J., and S. Lerakis. The aortic valve: the gatekeeper of the LVAD. CASE (Phila). 4(5):341–342, 2020. https://doi.org/10.1016/j.case.2020.05.015.

    Article  PubMed  Google Scholar 

  62. Hydren, J. R., J. R. Gifford, C. L. Jarrett, S. H. Park, K. L. Shields, R. M. Broxterman, A. C. Kithas, A. V. Bisconti, T. S. Thurston, S. M. Ratchford, D. W. Wray, J. Stehlik, C. H. Selzman, S. G. Drakos, and R. S. Richardson. Vascular function in continuous-flow left ventricular assist device recipients: effect of a single pulsatility treatment session. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320(4):R425–R437, 2021. https://doi.org/10.1152/ajpregu.00274.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sujino, Y., K. Kuroda, K. Yoshitake, N. Yagi, E. Anegawa, H. Mochizuki, K. Iwasaki, S. Nakajima, T. Watanabe, M. Yanase, S. Fukushima, T. Fujita, J. Kobayashi, and N. Fukushima. Clinical potential of hemodynamic ramp test by simultaneous echocardiography and right heart catheterization for aortic insufficiency in a patient with continuous-flow left ventricular assist device. J. Artif. Organs. 24(2):265–268, 2021. https://doi.org/10.1007/s10047-020-01210-y.

    Article  PubMed  Google Scholar 

  64. Dunlay, S. M., S. J. Park, K. Chandrasekaran, J. O. Choi, N. L. Pereira, L. D. Joyce, R. C. Daly, J. M. Stulak, and S. S. Kushwaha. Changes in left ventricular ejection fraction following implantation of left ventricular assist device as destination therapy. J. Heart Lung Transplant. 32(4, Supplement):S116, 2013. https://doi.org/10.1016/j.healun.2013.01.244.

    Article  Google Scholar 

  65. Travis, A. R., G. A. Giridharan, G. M. Pantalos, R. D. Dowling, S. D. Prabhu, M. S. Slaughter, M. Sobieski, A. Undar, D. J. Farrar, and S. C. Koenig. Vascular pulsatility in patients with a pulsatile- or continuous-flow ventricular assist device. J. Thorac. Cardiovasc. Surg. 133(2):517–524, 2007. https://doi.org/10.1016/j.jtcvs.2006.09.057.

    Article  PubMed  Google Scholar 

  66. Tzallas, A. T., N. S. Katertsidis, E. C. Karvounis, M. G. Tsipouras, G. Rigas, Y. Goletsis, K. Zielinski, L. Fresiello, A. D. Molfetta, G. Ferrari, J. V. Terrovitis, M. G. Trivella, and D. I. Fotiadis. Modeling and simulation of speed selection on left ventricular assist devices. Comput. Biol. Med. 51:128–139, 2014. https://doi.org/10.1016/j.compbiomed.2014.04.013.

    Article  PubMed  Google Scholar 

  67. Markham, D. W., and M. H. Drazner. Measuring nonpulsatile blood pressure. Circ. Heart Fail. 6(5):879–880, 2013. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000579.

    Article  PubMed  Google Scholar 

Download references

Funding

This Research Project (318S143) was funded by the Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Contributions

KM proposed and conducted the research, drafted the manuscript, and conducted revisions. IL supervised the doctoral research and revised the manuscript. SK advised on the disease modelling and provided clinical insights for the research. All authors approved the submission of the paper.

Corresponding author

Correspondence to Ismail Lazoglu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Zhenglun Alan Wei oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, K., Lazoglu, I. & Küçükaksu, D. Acausal Modelling of Advanced-Stage Heart Failure and the Istanbul Heart Ventricular Assist Device Support with Patient Data. Cardiovasc Eng Tech 14, 726–741 (2023). https://doi.org/10.1007/s13239-023-00683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-023-00683-1

Keywords

Navigation