Skip to main content
Log in

Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Worldwide, cardiovascular disease is the leading cause of hospitalization and death. Recently, the use of magnetizable nanoparticles for medical drug delivery has received much attention for potential treatment of both cancer and cardiovascular disease. However, proper understanding of the interacting magnetic field forces and the hydrodynamics of blood flow is needed for effective implementation. This paper presents the computational results of simulated implant assisted medical drug targeting (IA-MDT) via induced magnetism intended for administering patient specific doses of therapeutic agents to specific sites in the cardiovascular system. The drug delivery scheme presented in this paper functions via placement of a faintly magnetizable stent at a diseased location in the carotid artery, followed by delivery of magnetically susceptible drug carriers guided by the local magnetic field. Using this method, the magnetic stent can apply high localized magnetic field gradients within the diseased artery, while only exposing the neighboring tissues, arteries, and organs to a modest magnetic field. The localized field gradients also produce the forces needed to attract and hold drug-containing magnetic nanoparticles at the implant site for delivering therapeutic agents to treat in-stent restenosis.

Methods

The multi-physics computational model used in this work is from our previous work and has been slightly modified for the case scenario presented in this paper. The computational model is used to analyze pulsatile blood flow, particle motion, and particle capture efficiency in a magnetic stented region using the magnetic properties of magnetite (Fe3O4) and equations describing the magnetic forces acting on particles produced by an external cylindrical electromagnetic coil. The electromagnetic coil produces a uniform magnetic field in the computational arterial flow model domain, while both the particles and the implanted stent are paramagnetic. A Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of particles under the influence of a range of magnetic field strengths (Br = 2T, 4T, 6T, and 8T). Particle diameter sizes of 10 nm–4 µm in diameter were evaluated. Two dimensionless numbers were evaluated in this work to characterize relative effects of Brownian motion (BM), magnetic force induced particle motion, and convective blood flow on particle motion.

Results

The computational simulations demonstrate that the greatest particle capture efficiency results for particle diameters within the micron range of 0.7–4 µm, specifically in regions where flow separation and vortices are at a minimum. Similar to our previous work (which did not involve the use of a magnetic stent), it was also observed that the capture efficiency of particles decreases substantially with particle diameter, especially in the superparamagnetic regime. Contrary to our previous work, using a magnetic stent tripled the capture efficiency of superparamagnetic particles. The highest capture efficiency observed for superparamagnetic particles was 78% with an 8 T magnetic field strength and 65% with a 2 T magnetic field strength when analyzing 100 nm particles. For 10 nm particles and an 8 T magnetic field strength, the particle capture efficiency was 55% and for a 2 T magnetic field strength the particle capture efficiency was observed to be 43%. Furthermore, it was found that larger magnetic field strengths, large particle diameter sizes (1 µm and above), and slower blood flow velocity improves the particle capture efficiency. The distribution of captured particles on the vessel wall along the axial and azimuthal directions is also discussed. Results for captured particles on the vessel wall along the axial flow direction showed that the particle density decreased along the axial direction, especially after the stented region. For the entrance section of the stented region, the captured particle density distribution along the axial direction is large, corresponding to the center-symmetrical distribution of the magnetic force in that section.

Conclusion

The simulation results presented in this work have shown to yield favorable capture efficiencies for micron range particles and superparamagnetic particles using magnetized implants such as the stent discussed in this work. The results presented in this work justify further investigation of MDT as a treatment technique for cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

BM:

Brownian motion

CCA:

Common carotid artery

CFD:

Computational fluid dynamics

CoW:

Circle of Willis

DPM:

Discrete phase model

ECA:

External carotid artery

FDA:

Food and Drug Administration

FEM:

Finite element method

FV:

Finite volume

HGMS:

High gradient magnetic separation

IA-MDT:

Implant assisted medical drug targeting

ICA:

Internal carotid artery

MDT:

Medical drug targeting

MRI:

Magnetic resonance imaging

ROI:

Region of interest

SA-MDT:

Stent assisted magnetic drug targeting

SPION:

Superparamagnetic iron oxide nanoparticles

WSS:

Wall shear stress

A :

Experimental fit factor coefficient

a 1 ,a 2, and a 3 :

Smooth particle constants

b 1 ,b 2, and b 3 :

Drag coefficient constants

B r :

Magnetic field strength

C :

Arterial vessel capacitance

C e :

Cunningham correction factor

d :

Center magnet separation distance from the ICA centerline

d c :

Capture distance

d p :

Particle diameter

D :

Diffusion coefficient

\(\overline{\overline{D}}\) :

Rate of deformation tensor

u :

Three-dimensional velocity vector

u m :

Magnetic field induced velocity

u p :

Particle parcel velocity

ρ p :

Particle density

F bi :

Brownian force acceleration term

F D :

Drag force per unit mass

F mx :

Magnetic force in the x-direction

F my :

Magnetic force in the y-direction

F x :

Body force acceleration term

g x :

Gravitational acceleration term in the x-direction

H :

Magnetic field intensity

H x :

X-component magnetic field intensity

H y :

Y-component magnetic field intensity

i(t):

Flow rate

k B :

Boltzmann constant

L :

Length of the domain

M s :

Saturation magnetization

n :

Power law index

N np,in :

Number of particles entering the domain

N np,out :

Number of particles exiting the domain

p :

Pressure

Pe m :

Modified Peclet number

Re :

Reynolds number

R :

Radius of vessel

R d :

Distal resistant

R p :

Proximal resistance

R mag :

Radius of the magnet

R mp :

Radius of particle

s :

Surface area of a sphere having the same volume as the particle

S :

Actual area of the particle

S 0 :

Spectral constant

S n ij :

Spectral density

t :

Time

T :

Temperature

β m :

Dimensionless timescale (particles to reach the wall)

ζi :

Zero-mean unit-variance-independent Gaussian random number

ρ :

Fluid density

µ :

DYnamic viscosity

v :

Kinematic viscosity

η c :

Capture efficiency

λ :

Time constant

λ m :

Molecular mean free path

ω :

Vorticity

χ p :

Magnetic susceptibility

φ :

Shape factor

µ 0 :

Permeability of free space

µ r :

Relative permeability

µ :

Infinite viscosity

τ xy = τ yx :

Shear Stress

χ mp :

Magnetic susceptibility of the magnetic particles

\(\dot{\gamma }\) :

Strain rate

References

  1. Kulkarni, P., D. Rawtani, M. Kumar, and S. R. Lahoti. A review on the recent advancements in nanocarrier based drug delivery with a brief emphasis on the novel use of magnetoliposomes and extracellular vesicles and ongoing clinical trial research. J. Deliv. Sci. Technol. 60:102029, 2020.

    Article  CAS  Google Scholar 

  2. Bukala, J., P. P. Buszman, J. Malachowski, L. Mazurkiewicz, and K. Sybilski. Experimental tests, FEM constitutive modeling and validation of PLGA bioresorbable polymer for stent applications. Materials. 13:2003, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morciano, G., S. Patergnani, M. Bonora, G. Pedriali, A. Tarocco, E. Bouhamida, S. Marchi, G. Ancora, G. Anania, M. R. Wieckowski, et al. Mitophagy in cardiovascular diseases. J. Clin. Med. 9:892, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcimarrero-Espino, E. A., L. Figueroa-Valverde, A. Camacho-Luis, M. Rosas-Nexticapa, et al. Synthesis of new azaindeno-acetonitrile derivative with inotropic activity against heart failure model. Biointerface Res. Appl. Chem. 9:4598–4604, 2019.

    Article  Google Scholar 

  5. Udriste, A. S., A. G. Niculescu, A. M. Grumezescu, and E. Badila. Cardiovascular stents: a review of past, current, and emerging devices. Materials. 2498(10):1–22, 2021.

    Google Scholar 

  6. Edwards, M., J. P. Kizito, and R. L. J. Hewlin. A time-dependent two species explicit finite difference computational model for analyzing diffusion in a drug eluting stented coronary artery wall: a phase I study. Proc. ASME 2022 Int. Mech. Eng. Cong. Expos. Volume 4: Biomedical and Biotechnology; Design, Systems, and Complexity. Columbus, Ohio, USA. October 30–November 3. ASME, p. V004T05A009, 2022.

  7. Al-Jamal, T., J. Bai, J. Wang, et al. Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett. 16:5652–5660, 2016.

    Article  CAS  PubMed  Google Scholar 

  8. Grief, A., and G. Richardson. Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293(1):455–463, 2005.

    Article  CAS  Google Scholar 

  9. Goya, G. F., V. Grazu, and M. R. Ibarra. Magnetic nanoparticles for cancer therapy. Curr. Nanosci. 4(1):1–16, 2008.

    Article  CAS  Google Scholar 

  10. Hewlin, R. L. J., M. Edwards, and C. Schultz. Design and development of a traveling wave ferro-microfluidic device and system rig for potential magnetophoretic cell separation and sorting in a water-based ferrofluid. Micromachines. 14:889, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Widder, K. J., R. M. Morris, P. G. Poore, D. Howard, and A. E. Senyei. Tumor remission in yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc. Natl. Acad. Sci. USA. 78(1):579–581, 1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramaswamy, B., S. Kulkarni, S. Villar Pablo, et al. Movement of magnetic nanoparticles in brain tissue: mechanisms and impact on normal neuronal function. Nanomed. Nanotechnol. Biol. Med. 11(7):1821–1829, 2015.

    Article  CAS  Google Scholar 

  13. Boghi, A., F. Russo, and F. Gori. Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk. J. Magn. Magn. Mater. 437:86–97, 2017.

    Article  CAS  Google Scholar 

  14. Russo, F., A. Boghi, and F. Gori. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tact. J. Magn. Magn. Mater. 451:554–564, 2018.

    Article  CAS  Google Scholar 

  15. Haverkort, J. W., K. Kenjeres, and C. R. Kleijn. Computational simulations of magnetic particle capture in arterial flows. Ann. Biomed. Eng. 37:2436–2448, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bose, S., and M. Banerjee. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling. J. Magn. Magn. Mater. 385:32–46, 2015.

    Article  CAS  Google Scholar 

  17. Tzirtzolakis, E. E., and V. C. Lokopoulos. Biofluid flow in a channel under the action of a uniform localized magnetic field. Comp. Mech. 36(5):360–374, 2005.

    Article  Google Scholar 

  18. Liu, Y., J. Tan, A. Thomas, H. D. Ou-Yang, and V. R. Muzykantov. The shape of things to come: importance of design in nanotechnology for drug delivery. Ther. Deliv. 3(2):181–194, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Wong, B. S., Y. G. Low, W. Xin, H. Jee-Hou, T. ChingSeong, and O. Jong Boon. 3D Finite Element Simulation of Magnetic Particle Inspection. Sustainable Utilization and Development in Engineering and Technology (STUDENT) 2010 IEEE Conference on 20–21 Nov, pp. 50-55, 2010.

  20. Hewlin, R. L. J., and J. M. Tindall. Computational assessment of magnetic nanoparticle targeting efficiency in a simplified circle of willis arterial model. Int. J. Mol. Sci. 24:2545, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furlani, E. P., and K. C. Ng. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E. 2006. https://doi.org/10.1103/PhysRevE.73.061919.

    Article  Google Scholar 

  22. Iacob, G., O. Rotariu, N. J. C. Strachan, and U. O. Hafeli. Magnetizable needles and wires-modeling an efficieny way to target magnetic microspheres in vivo. Biorheology. 41:599–612, 2004.

    CAS  PubMed  Google Scholar 

  23. Ning, P., C. Lanlan, K. Yang, et al. Uniform magnetic targeting of magnetic particles attracted by a new ferromagnetic biological patch. Bioelectromagnetics. 39(2):98–107, 2018.

    Article  Google Scholar 

  24. Aviles, M. O., H. Chen, A. D. Ebner, et al. In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting. J. Magn. Mater. 311(1):306–311, 2007.

    Article  CAS  Google Scholar 

  25. Chen, H., A. F. Ebner, A. B. Rosengart, et al. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent: 1. Parametric study with single wire correlation. J. Magn. Magn. Mater. 284:181–194, 2004.

    Article  CAS  Google Scholar 

  26. Diaconu, A., A. P. Chiriac, N. Tudorachi, et al. Investigation concerning the possibilities for the deposition of magnetic nanoparticles onto a metallic stent. Revue Roumaine De Chimie. 62(8–9):677–685, 2017.

    Google Scholar 

  27. Tefft, B. J., S. Uthamaraj, J. J. Harburn, O. Hlinomaz, A. Lerman, D. Dragomir-Daescu, and G. Sandhu. Magnetizable stent-grafts enable endothelial cell capture. J. Magn. Magn. Mater. 427:100–104, 2017.

    Article  CAS  PubMed  Google Scholar 

  28. Yellen, B. B., Z. G. Forbes, D. S. Halverson, et al. Targeted drug delivery to magnetic implants for therapeutic applications. J. Magn. Magn. Mater. 293(1):647–654, 2005.

    Article  CAS  Google Scholar 

  29. Rosengart, A. J., M. D. Kaminski, H. T. Chen, P. L. Caviness, A. D. Ebner, and J. A. Ritter. Magnetizable implants and functionalized magnetic carriers: a novel approach for noninvasive yet targeted drug delivery. J. Magn. Magn. Mater. 293(1):633–638, 2005.

    Article  CAS  Google Scholar 

  30. Ritter, J. A., A. D. Ebner, K. D. Daniel, and K. L. Stewart. Application of high gradient magnetic separation principles to magnetic drug targeting. J. Magn. Magn. Mater. 280(2–3):184–201, 2004.

    Article  CAS  Google Scholar 

  31. Mardinoglu, A., P. J. Cregg, K. Murphy, M. Curtin, and A. Prina-Mello. Theoretical modelling of physiologically stretched vessel in magnetisable stent assisted magnetic drug targeting application. J. Magn. Magn. Mater. 323(3–4):324–329, 2011.

    Article  CAS  Google Scholar 

  32. Forbes, Z. G., B. B. Yallen, D. S. Halverson, G. Fridman, K. A. Barbee, and G. Friedman. Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. IEEE T Bio-Med. Eng. 55(2):643–649, 2008.

    Article  Google Scholar 

  33. Gay, M., and L. T. Zhang. Numerical studies of blood flow in healthy, stenosed, and stented carotid arteries. Int. J. Numer. Method Fluids. 61(4):453–472, 2009.

    Article  Google Scholar 

  34. Chorny, M. F. I., B. B. Yellen, I. S. Alferiev, M. Bakay, S. Ganta, R. Adamo, M. Amiji, G. Friedman, and R. J. Levy. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl. Acad. Sci. USA. 107(18):8346–8351, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chorny, M., I. Fishbein, I. Alferiev, and R. J. Levy. Magnetically responsive biodegradable nanoparticles enhanced adenoviral gene transfer in cultured smooth muscle and endothelial cells. Mol. Pharm. 6(5):1380–1387, 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Polyak, B., I. Fishbein, M. Chorny, I. Alferiev, D. Williams, B. B. Yellen, G. Freidman, and R. J. Lavy. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surface of steel stents. Proc. Natl. Acad. Sci. USA. 105(2):698–703, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chorny, M., B. Polyak, I. S. Alferiev, K. Walsh, G. Friedman, and R. J. Levy. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J. 21(10):2510–2519, 2007.

    Article  CAS  PubMed  Google Scholar 

  38. Chorny, M., I. Fishbein, S. Forbes, and I. Alferiev. Magnetic nanoparticles for targeted vascular delivery. Iubmb Life. 62(8):613–620, 2011.

    Article  Google Scholar 

  39. de Vries, I. J. M., W. J. Lesterhuid, J. O. Barentsz, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol. 23(11):1407–1413, 2005.

    Article  PubMed  Google Scholar 

  40. Bernabeu, M. O., R. W. Nash, D. Groen, H. B. Carver, J. Hetherington, and T. Kruger. Impact of blood rheology on wall shear stress in a model of the middle cerebral artery. Interface Focus. 3:20120094, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Morales, H. G., I. Larrabide, A. J. Geers, M. L. Aguilar, and A. F. Frangi. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. J. Biomech. 46:2158–2164, 2013.

    Article  PubMed  Google Scholar 

  42. Liu, H., L. Linfang, J. Abrigo, et al. Comparison of Newtonian and non-newtonian fluid models in blood flow simulation in patients with intracranial arterial stenosis. Front. Physiol. 12:718540, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Weddell, J. C., J. Kwack, P. I. Imoukhuede, and A. Masud. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between newtonian and non-Newtonian blood models. PLoS ONE. 10:e0124575, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ameenuddin, M., and M. Anan. A mixture theory model for blood combined with low-density lipoprotein transport to predict early atherosclerosis regions in idealized and patient-derived abdominal aorta. J. Biomech. Eng. 2020. https://doi.org/10.1115/1.4047426.

    Article  PubMed  Google Scholar 

  45. Hewlin, R., and J. Kizito. Comparison of carotid bifurcation hemodynamics in patient-specific geometries at rest and during exercise. ASME Fluids Eng. Div. Summer Meet. 82:74, 2013.

    Google Scholar 

  46. Hewlin, R. Transient Cardiovascular Hemodynamics in a Patient-Specific Arterial System. New York: ProQuest Dissertation Publishing, 2015.

  47. Stanley, N., A. Ciero, W. Timms, and R.L.J. Hewlin. Development of 3-D printed optically clear rigid anatomical vessels for particle image velocimetry analysis in cardiovascular flow. Proc. ASME 2019 Int. Mech. Eng. Congr. Expos.. Volume 7: Fluids Engineering. Salt Lake City, Utah, USA. November 11–14. V007T08A004. ASME, 2019.

  48. Stanley, N., A. Ciero, W. Timms, and R. L. J. Hewlin. A 3-D printed optically clear rigid diseased carotid bifurcation arterial mock vessel model for particle image velocimetry analysis in pulsatile flow. ASME Open J. Eng. ASME. 2023. https://doi.org/10.1115/1.4056639.

    Article  Google Scholar 

  49. Hewlin, J. R. L., and J. P. Kizito. Development of an experimental and digital cardiovascular arterial model for transient hemodynamic and postural change studies: a preliminary framework analysis. Cariodvasc. Eng. Tech. 9:1–31, 2018.

    Article  Google Scholar 

  50. Hewlin, J. R. L., and J. P. Kizito. Evaluation of the effect of simplified and patient-specific arterial geometry on hemodynamic flow in stenosed carotid bifurcation arteries. ASME Early Career Techn. J. 10:39–44, 2011.

    Google Scholar 

  51. Gharahi, H., B. Zambrano, D. Zhu, J. Dermarco, and B. Seungik. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int. J. Adv. Eng. Sci. 8(1):40–60, 2016.

    Google Scholar 

  52. Furlani, E. J., and E. P. Furlani. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 312:187–193, 2007.

    Article  CAS  Google Scholar 

  53. Hewlin, R. L. J., M. Edwards, and M. Smith. A 2D transient computational multi-physics model for analyzing magnetic and non-magnetic particle (red blood cells and E. Coli bacteria) dynamics in a travelling wave ferro-magnetic microfluidic device for potential cell separation and sorting. ASME J. 2023. https://doi.org/10.1115/1.4062571.

    Article  Google Scholar 

  54. Wang, S., Y. Zhou, J. Tan, et al. Computational modelling of magnetic nanoparticle targeting to stent surface under high gradient field. Comput. Mech. 53(3):403–412, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Takayasu, M., R. Gerber, and F. J. Friedlaender. Magnetic separation of submicron particles. IEEE Trans. Magn. 19(5):2112–2114, 1983.

    Article  Google Scholar 

  56. Hewlin, J. R. L., A. Ciero, and J. P. Kizito. Development of a two-way coupled Eulerian-Lagrangian computational magnetic nanoparticle targeting model for pulsatile flow in a patient-specific diseased left carotid bifurcation artery. Cardiovasc. Eng. Technol. 10(2):299–313, 2019.

    Article  PubMed  Google Scholar 

  57. Lunnoo, T., and T. Puangmali. Capture efficiency of biocompatible magnetic nanoparticles in arterial flow: a computer simulation for magnetic drug targeting. Nanoscale Res. Lett. 10(426):1–11, 2015.

    CAS  Google Scholar 

  58. Morsi, S. A., and A. J. Alexander. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55(2):193–208, 1972.

    Article  Google Scholar 

  59. Haider, A., and O. Levenspiel. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58:63–70, 1989.

    Article  CAS  Google Scholar 

  60. Ounis, H., G. Ahmadi, and J. B. McLaughlin. Brownian diffusion of submicrometer particles in viscous sublayer. J. Colloid Interface Sci. 143(1):266–277, 1991.

    Article  CAS  Google Scholar 

  61. Bose, S., A. Datta, R. Ganguly, and M. Banerjee. Lagrangian magnetic particle tracking through stenosed artery under pulsatile flow condition. J. Nano Eng. Med. 4(3):1–10, 2014.

    Google Scholar 

  62. Zaremba, L. A. Guidance for Industry and FDA Staff: Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices. Washington DC: Center for Devices and Radiological Health, 2003.

    Google Scholar 

  63. Wang, J., J. D. Byrne, M. E. Napier, and J. M. DeSimone. More effective nanomedicine through particle design. Small. 7(14):1919–1931, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petros, R. A., and J. M. DeSimone. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9(8):615–627, 2010.

    Article  CAS  PubMed  Google Scholar 

  65. Cheung, S. C., K. K. Wong, G. H. Yeoh, et al. Experimental and numerical study on the hemodynamics of stenosed carotid bifurcation. Australas. Phys. Eng. Sci. Med. 33(4):319–328, 2011.

    Article  Google Scholar 

  66. Vetel, J., A. Garon, and S. Pelletier. Lagrangian coherent structures in the human carotid artery bifurcation. Exp. Fluids. 46(6):1067–1079, 2009.

    Article  Google Scholar 

  67. Buchmann, A. C., M. C. Jeremy, and J. Soria. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp. Fluids. 50(4):1131–1151, 2011.

    Article  CAS  Google Scholar 

  68. Sui, B., P. Gao, Y. Lin, B. Gao, L. Liu, and J. An. Assessment of wall shear stress in the common carotid artery of healthy subjects using 3.0-tesla magnetic resonance. Acta Radiol. 49(4):442–449, 2008.

    Article  CAS  PubMed  Google Scholar 

  69. Xiao, L., S. Beibei, Z. Huilin, et al. Retrospective study of hemodynamic changes before and after carotid stenosis formation by vessel surface repairing. Nature. 5493:1–8, 2018.

    Google Scholar 

  70. Shubayev, V. I., T. R. Pisanic, and S. Jin. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61:467–477, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodward L. Hewlin Jr..

Ethics declarations

Conflict of interest

The authors of this work declare no conflict of interests.

Research involving human and animal rights

No animal studies were carried out by the authors for this article. No human studies were carried out by the authors for this article.

Additional information

Associate Editor Sarah Vigmostad oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewlin, R.L., Smith, M. & Kizito, J.P. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery. Cardiovasc Eng Tech 14, 694–712 (2023). https://doi.org/10.1007/s13239-023-00681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-023-00681-3

Keywords

Navigation