Skip to main content
Log in

Effect of Cyclic Uniaxial Mechanical Strain on Endothelial Progenitor Cell Differentiation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Endothelial progenitor cells (EPCs) have been used as an autologous or allogeneic source in multiple tissue engineering applications. EPCs possess high proliferative and tissue regeneration potential. The effect of shear stress on EPCs has been extensively studied but the role of cyclic mechanical strain on EPCs remains to be understood. In this study, we focused on examining the role of uniaxial cyclic strain on EPCs cultured on three-dimensional (3D) anisotropic composites that mimic healthy and diseased aortic valve tissue matrix compositions.

Methods and Results

The composites were fabricated by combining centrifugal jet spun fibers with photocrosslinkable gelatin and glycosaminoglycan hydrogels. A custom-designed uniaxial cyclic stretcher was used to provide the necessary cyclic stimulation to the EPC-seeded 3D composites. The samples were cyclically strained at a rate of 1 Hz at 15% strain mimicking the physiological condition experienced by aortic valve, with static conditions serving as controls. Cell viability was high in all conditions. Immunostaining revealed reduced endothelial marker (CD31) expression with increased smooth muscle cell marker, SM22α, expression when subjected to cyclic strain. Functional analysis through Matrigel assay agreed with the immunostaining findings with reduced tubular structure formation in strained conditions compared to EPC controls. Additionally, the cells showed reduced acLDL uptake compared to controls which are in alignment with the EPCs undergoing differentiation.

Conclusion

Overall, we show that EPCs lose their endothelial progenitor phenotype, and have the potential to be differentiated into mesenchymal-like cells through cyclic mechanical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Angelos, M. G., M. A. Brown, L. L. Satterwhite, V. W. Levering, N. T. Shaked, and G. A. Truskey. Dynamic adhesion of umbilical cord blood endothelial progenitor cells under laminar shear stress. Biophys. J. 99(11):3545–3554, 2010. https://doi.org/10.1016/j.bpj.2010.10.004.

    Article  CAS  Google Scholar 

  2. Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 275(5302):964–967, 1997. https://doi.org/10.1126/science.275.5302.964.

    Article  CAS  Google Scholar 

  3. Balachandran, K., P. W. Alford, J. Wylie-Sears, J. A. Goss, A. Grosberg, J. Bischoff, et al. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci USA. 108(50):19943–19948, 2011. https://doi.org/10.1073/pnas.1106954108.

    Article  Google Scholar 

  4. Bono, N., D. Pezzoli, L. Levesque, C. Loy, G. Candiani, G. B. Fiore, et al. Unraveling the role of mechanical stimulation on smooth muscle cells: a comparative study between 2D and 3D models. Biotechnol. Bioeng. 113(10):2254–2263, 2016.

    Article  CAS  Google Scholar 

  5. Ceccarelli, J., A. Cheng, and A. J. Putnam. Mechanical strain controls endothelial patterning during angiogenic sprouting. Cell. Mol. Bioeng. 5(4):463–473, 2012. https://doi.org/10.1007/s12195-012-0242-y.

    Article  Google Scholar 

  6. Cheng, B. B., Z. Q. Yan, Q. P. Yao, B. R. Shen, J. Y. Wang, L. Z. Gao, et al. Association of SIRT1 expression with shear stress induced endothelial progenitor cell differentiation. J. Cell. Biochem. 113(12):3663–3671, 2012. https://doi.org/10.1002/jcb.24239.

    Article  CAS  Google Scholar 

  7. Dainese, L., A. Guarino, B. Micheli, V. Biagioli, G. Polvani, F. Maccari, et al. Aortic valve leaflet glycosaminoglycans composition and modification in severe chronic valve regurgitation. J. Heart Valve Dis. 22(4):484–490, 2013.

    Google Scholar 

  8. Diez, M., M. M. Musri, E. Ferrer, J. A. Barbera, and V. I. Peinado. Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI. Cardiovasc. Res. 88(3):502–511, 2010.

    Article  CAS  Google Scholar 

  9. Doyoung, K., and Y. Son. Mechanical cyclic stretch regulate angiogenic abilities of endothelial progenitor cells. Cytotherapy. 22(5):S191–S192, 2020.

    Article  Google Scholar 

  10. Egusa, H., M. Kobayashi, T. Matsumoto, J. Sasaki, S. Uraguchi, and H. Yatani. Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone marrow-derived mesenchymal stromal cells with cell alignment. Tissue Eng. Part A. 19(5–6):770–782, 2013. https://doi.org/10.1089/ten.TEA.2012.0164.

    Article  CAS  Google Scholar 

  11. Gao, D., D. Nolan, K. McDonnell, L. Vahdat, R. Benezra, N. Altorki, et al. Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim. Biophys. Aacta. 1796(1):33–40, 2009. https://doi.org/10.1016/j.bbcan.2009.05.001.

    Article  CAS  Google Scholar 

  12. George, A. L., P. Bangalore-Prakash, S. Rajoria, R. Suriano, A. Shanmugam, A. Mittelman, et al. Endothelial progenitor cell biology in disease and tissue regeneration. J. Hematol. Oncol. 4:24, 2011.

    Article  Google Scholar 

  13. Ghaleh, A. S., S. Saghati, R. Rahbarghazi, A. Hassani, L. S. Kaleybar, M. H. Geranmayeh, et al. Static and dynamic culture of human endothelial cells encapsulated inside alginate-gelatin microspheres. Microvasc. Res.137:104174, 2021. https://doi.org/10.1016/j.mvr.2021.104174.

    Article  CAS  Google Scholar 

  14. Hess, D. C., C. A. Sila, A. J. Furlan, L. R. Wechsler, J. A. Switzer, and R. W. Mays. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. Int. J. Stroke. 9(3):381–386, 2014. https://doi.org/10.1111/ijs.12065.

    Article  Google Scholar 

  15. Hess, D. C., L. R. Wechsler, W. M. Clark, S. I. Savitz, G. A. Ford, D. Chiu, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 16(5):360–368, 2017. https://doi.org/10.1016/S1474-4422(17)30046-7.

    Article  Google Scholar 

  16. Huang, A. H., Y.-U. Lee, E. A. Calle, M. Boyle, B. C. Starcher, J. D. Humphrey, et al. Design and use of a novel bioreactor for regeneration of biaxially stretched tissue-engineered vessels. Tissue Eng. Part C. 21(8):841–851, 2015.

    Article  CAS  Google Scholar 

  17. Khang, A., P. Ravishankar, A. Krishnaswamy, P. K. Anderson, S. G. Cone, Z. Liu, et al. Engineering anisotropic biphasic Janus-type polymer nanofiber scaffold networks via centrifugal jet spinning. J. Biomed. Mater. Res. Part B. 105(8):2455–2464, 2017. https://doi.org/10.1002/jbm.b.33791.

    Article  CAS  Google Scholar 

  18. Ladhoff, J., B. Fleischer, Y. Hara, H. D. Volk, and M. Seifert. Immune privilege of endothelial cells differentiated from endothelial progenitor cells. Cardiovasc. Res. 88(1):121–129, 2010. https://doi.org/10.1093/cvr/cvq109.

    Article  CAS  Google Scholar 

  19. Lei, Y., and Z. Ferdous. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering. Biotechnol. Progr. 32(3):543–553, 2016. https://doi.org/10.1002/btpr.2256.

    Article  CAS  Google Scholar 

  20. Li, Y., G. Huang, M. Li, L. Wang, E. L. Elson, T. J. Lu, et al. An approach to quantifying 3D responses of cells to extreme strain. Sci. Rep. 6:19550, 2016. https://doi.org/10.1038/srep19550.

    Article  CAS  Google Scholar 

  21. Link, P. A., D. Farkas, L. Farkas, and R. L. Heise. Pulmonary endothelial progenitor cells demonstrate phenotypic shift from altered substrate mechanics. Am. J. Resp. Crit. Care. 195:4309, 2017.

    Google Scholar 

  22. Matsumoto, T., Y. C. Yung, C. Fischbach, H. J. Kong, R. Nakaoka, and D. J. Mooney. Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng. 13(1):207–217, 2007. https://doi.org/10.1089/ten.2006.0058.

    Article  CAS  Google Scholar 

  23. Moonen, J.-R.A.J., G. Krenning, M. G. L. Brinker, J. A. Koerts, M. J. A. van Luyn, and M. C. Harmsen. Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc Res. 86(3):506–515, 2010.

    Article  CAS  Google Scholar 

  24. Nova-Lamperti, E., F. Zúñiga, V. Ormazábal, C. Escudero, and C. Aguayo. Vascular regeneration by endothelial progenitor cells in health and diseases. Microcirc. Rev. 2016. https://doi.org/10.5772/64529.

    Article  Google Scholar 

  25. Obi, S., H. Masuda, T. Shizuno, A. Sato, K. Yamamoto, J. Ando, et al. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am. J. Physiol. Cell Physiol. 303(6):C595-606, 2012. https://doi.org/10.1152/ajpcell.00133.2012.

    Article  CAS  Google Scholar 

  26. Obi, S., K. Yamamoto, and J. Ando. Effects of shear stress on endothelial progenitor cells. J. Biomed. Nanotechnol. 10(10):2586–2597, 2014. https://doi.org/10.1166/jbn.2014.2014.

    Article  CAS  Google Scholar 

  27. Von Offenberg, Sweeney N., P. M. Cummins, E. J. Cotter, P. A. Fitzpatrick, Y. A. Birney, E. M. Redmond, et al. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem. Biophys. Res. Commun. 329(2):573–582, 2005. https://doi.org/10.1016/j.bbrc.2005.02.013.

    Article  CAS  Google Scholar 

  28. Patel, J., P. Donovan, and K. Khosrotehrani. Concise review: functional definition of endothelial progenitor cells: a molecular perspective. Stem Cells Transl. Med. 5(10):1302–1306, 2016.

    Article  CAS  Google Scholar 

  29. Porras, A. M., J. A. Westlund, A. D. Evans, and K. S. Masters. Creation of disease-inspired biomaterial environments to mimic pathological events in early calcific aortic valve disease. Proc. Natl. Acad. Sci. USA. 115(3):E363–E371, 2018. https://doi.org/10.1073/pnas.1704637115.

    Article  CAS  Google Scholar 

  30. Ravishankar, P., A. Khang, M. Laredo, and K. Balachandran. Using dimensionless numbers to predict centrifugal jet-spun nanofiber morphology. J. Nanomater. 2019:2019, 2019.

    Article  Google Scholar 

  31. Ravishankar, P., A. Ozkizilcik, A. Husain, and K. Balachandran. Anisotropic fiber-reinforced glycosaminoglycan hydrogels for heart valve tissue engineering. Tissue Eng Part A. 2020. https://doi.org/10.1089/ten.TEA.2020.0118.

    Article  Google Scholar 

  32. Ravishankar, P., M. A. Zeballos, and K. Balachandran. Isolation of endothelial progenitor cells from human umbilical cord blood. J. Visual. Exp. 2017. https://doi.org/10.3791/56021.

    Article  Google Scholar 

  33. Ribatti, D. The discovery of endothelial progenitor cells. An historical review. Leuk Res. 31(4):439–444, 2007.

    Article  CAS  Google Scholar 

  34. Rössig, L., C. Urbich, T. Brühl, E. Dernbach, C. Heeschen, E. Chavakis, et al. Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J. Exp. Med. 201(11):1825–1835, 2005.

    Article  Google Scholar 

  35. Saberianpour, S., M. Heidarzadeh, M. H. Geranmayeh, H. Hosseinkhani, R. Rahbarghazi, and M. Nouri. Tissue engineering strategies for the induction of angiogenesis using biomaterials. J. Biol. Eng. 12(1):1–15, 2018.

    Article  Google Scholar 

  36. Sacks, M. S., W. David Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42(12):1804–1824, 2009. https://doi.org/10.1016/j.jbiomech.2009.05.015.

    Article  Google Scholar 

  37. Sales, V. L., G. C. Engelmayr Jr., B. A. Mettler, J. A. Johnson Jr., M. S. Sacks, and J. E. Mayer Jr. Transforming growth factor-beta1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds. Circulation. 114(1 Suppl):I193–I199, 2006.

    Google Scholar 

  38. Sales, V. L., B. A. Mettler, G. C. Engelmayr Jr., E. Aikawa, J. Bischoff, D. P. Martin, et al. Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Eng. Part A. 16(1):257–267, 2010.

    Article  CAS  Google Scholar 

  39. Urbich, C., and S. Dimmeler. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 95(4):343–353, 2004.

    Article  CAS  Google Scholar 

  40. Vaughan, E. E., and T. O’Brien. Isolation of circulating angiogenic cells. Methods Mol. Biol. 916:351–356, 2012. https://doi.org/10.1007/978-1-61779-980-8_25.

    Article  CAS  Google Scholar 

  41. Xue, Y., P. Ravishankar, M. A. Zeballos, V. Sant, K. Balachandran, and S. Sant. Valve leaflet-inspired elastomeric scaffolds with tunable and anisotropic mechanical properties. Polym. Adv. Technol. 31(1):94–106, 2020.

    Article  CAS  Google Scholar 

  42. Yuk, H., T. Zhang, G. A. Parada, X. Liu, and X. Zhao. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7(1):1–11, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from the National Science Foundation under grant number CMMI-1452943, and Arkansas Biosciences Institute.

Conflict of interest

All authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Balachandran.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4467 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravishankar, P., Tandon, I. & Balachandran, K. Effect of Cyclic Uniaxial Mechanical Strain on Endothelial Progenitor Cell Differentiation. Cardiovasc Eng Tech 13, 872–885 (2022). https://doi.org/10.1007/s13239-022-00623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00623-5

Keywords

Navigation