Skip to main content
Log in

Ultrasound Based Computational Fluid Dynamics Assessment of Brachial Artery Wall Shear Stress in Preeclamptic Pregnancy

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Preeclampsia (PE) is a pregnancy complication of abnormally elevated blood pressure and organ damage where endothelial function is impaired. Wall shear stress (WSS) strongly effects endothelial cell morphology and function but in PE the WSS values are unknown. WSS calculations from ultrasound inaccurately assume cylindrical arteries and patient specific computational fluid dynamics (CFD) typically require time-consuming 3D imaging such as CT or MRI.

Methods

Two-dimensional (2D) B-mode ultrasound images were lofted together to create simplified three-dimensional (3D) geometries of the brachial artery (BA) that incorporate artery curvature and non-circular cross sections. This process was efficient and on average took 120 ± 10 s. Patient specific CFD was then performed to quantify BA WSS for a small cohort of PE (n = 5) and normotensive pregnant patients (n = 5) and compared against WSS calculations assuming a cylindrical artery.

Results

For several WSS metrics (time averaged WSS (TAWSS), peak systolic WSS, oscillatory shear index (OSI), OSI/TAWSS and relative residence time) CFD on the simplified arterial geometries calculated large spatial differences in WSS that assuming a cylindrical artery cannot calculate. Bland–Altman and intra-class correlation (ICC) analyses found assuming a cylindrical artery both underestimated (p < 0.05) and had poor agreement (ICC < 0.5) with the maximum WSS values from CFD. WSS values that were abnormal compared to the normotensive patients (OSI = 0.014 ± 0.026) appear related to the pregnancy complications fetal growth restriction (n = 2, OSI = 0.14, 0.25) and gestational diabetes (n = 1, OSI = 0.23).

Conclusion

Creating 3D artery geometries from 2D ultrasound images can be used for CFD simulations to calculate WSS from ultrasound without assuming cylindrical arteries. This approach requires minimal time for both medical imaging and CFD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

PE:

Preeclampsia

WSS:

Wall shear stress

BA:

Brachial artery

NT:

Normotensive

TAWSS:

Time average wall shear stress

OSI:

Oscillatory shear index

RRT:

Relative residence time

References

  1. Arzani, A., G. Y. Suh, R. L. Dalman, and S. C. Shadden. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am. J. Physiol. Hear. Circ. Physiol. 307:H1786–H1795, 2014.

    Article  Google Scholar 

  2. Ballermann, B. J., A. Dardik, E. Eng, and A. Liu. Shear stress and the endothelium. Kidney Int 54:S100–S108, 1998.

    Article  Google Scholar 

  3. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. 1996. https://asmedigitalcollection.asme.org/biomechanical/article-pdf/118/3/280/5766734/280_1.pdf.

  4. Boekhoven, R. W., R. G. P. Lopata, M. R. van Sambeek, F. N. van de Vosse, and M. C. M. Rutten. A novel experimental approach for three-dimensional geometry assessment of calcified human stenotic arteries in vitro. Ultrasound Med. Biol. 39:1875–1886, 2013.

    Article  Google Scholar 

  5. Burton, G. J., C. W. Redman, J. M. Roberts, and A. Moffett. Pre-eclampsia: pathophysiology and clinical implications. BMJ 366:l2381, 2019.

    Article  Google Scholar 

  6. Coolbaugh, C. L., E. C. Bush, C. F. Caskey, B. M. Damon, and T. F. Towse. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis. J. Appl. Physiol. 121:849–857, 2016.

    Article  Google Scholar 

  7. Guerci, B., P. Böhme, A. Kearney-Schwartz, F. Zannad, and P. Drouin. Endothelial dysfunction and type 2 diabetes. Part 2: altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes Metab 27:436–447, 2001.

    Google Scholar 

  8. Guerci, B., A. Kearney-Schwartz, P. Böhme, F. Zannad, and P. Drouin. Endothelial dysfunction and type 2 diabetes: part 1: physiology and methods for exploring the endothelial function. Diabetes Metab 27:425–434, 2001.

    Google Scholar 

  9. Hausberg, M., K. Kisters, M. Kosch, K. H. Rahn, and M. Barenbrock. Flow-mediated vasodilation and distensibility of the brachial artery in renal allograft recipients. Kidney Int. 55:1104–1110, 1999.

    Article  Google Scholar 

  10. Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. Lamack, X.-M. Li, M. H. Friedman, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability Downloaded from. Am. J. Physiol. Hear. Circ. Physiol. 286:1916–1922, 2004.

    Article  Google Scholar 

  11. Hogan, M. C., K. J. Foreman, M. Naghavi, S. Y. Ahn, M. Wang, S. M. Makela, A. D. Lopez, R. Lozano, and C. J. Murray. Maternal mortality for 181 countries, 1980-2008: a systematic analysis of progress towards Millennium Development Goal 5. Lancet 375:1609–1623, 2010.

    Article  Google Scholar 

  12. Humphrey, J. D., P. Di Achille, G. Tellides, and C. A. Figueroa. A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014. https://doi.org/10.1098/rspa.2014.0163.

    Article  MATH  Google Scholar 

  13. Joly, F., G. Soulez, S. Lessard, C. Kauffmann, and I. Vignon-Clementel. A cohort longitudinal study identifies morphology and hemodynamics predictors of abdominal aortic aneurysm growth. Ann. Biomed. Eng. 48:606–623, 2020.

    Article  Google Scholar 

  14. Katritsis, D., L. Kaiktsis, A. Chaniotis, J. Pantos, E. P. Efstathopoulos, and V. Marmarelis. Wall shear stress: theoretical considerations and methods of measurement. Prog. Cardiovasc. Dis. 49:307–329, 2007.

    Article  Google Scholar 

  15. Kheyfets, V. O., L. Rios, T. Smith, T. Schroeder, J. Mueller, S. Murali, D. Lasorda, A. Zikos, J. Spotti, J. J. Reilly, and E. A. Finol. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput. Methods Progr. Biomed. 120:88–101, 2015.

    Article  Google Scholar 

  16. Kuklina, E. V., C. Ayala, and W. M. Callaghan. Hypertensive disorders and severe obstetric morbidity in the United States LEVEL OF EVIDENCE: III. Obstet Gynecol 113(6):1299–1306, 2009.

    Article  Google Scholar 

  17. Lu, D., and G. S. Kassab. Role of shear stress and stretch in vascular mechanobiology. J. R. Soc. Interface 8:1379–1385, 2011.

    Article  Google Scholar 

  18. Magness, R. R., C. E. Shaw, T. M. Phernetton, J. Zheng, and I. M. Bird. Endothelial vasodilator production by uterine and systemic arteries. II. Pregnancy effects on NO synthase expression. Am. J. Physiol. Heart Circ. Physiol. 272(4):H1730–H1740, 1997.

    Article  Google Scholar 

  19. Magness, R. R., J. A. Sullivan, T. M. Phernetton, I. M. Bird, Y. Li, and I. M. Bird. Endothelial vasodilator production by uterine and systemic arteries. VI. Ovarian and pregnancy effects on eNOS and NOx. Am. J. Physiol. Heart Circ. Physiol. 280(4):H1692–H1698, 2001.

    Article  Google Scholar 

  20. Mcveigh, G. E., G. M. Brennan, G. D. Johnston, B. J. Mcdermott, L. T. Mcgrath, W. R. Henry, J. W. Andrews, and J. R. Hayes. Impaired endothelium-dependent and independent vasodilation in patients with Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35:771–776, 1992.

    Google Scholar 

  21. Mynard, J. P., B. A. Wasserman, and D. A. Steinman. Errors in the estimation of wall shear stress by maximum Doppler velocity. Atherosclerosis 227:259–266, 2013.

    Article  Google Scholar 

  22. Placental bed disorders: basic science and its translation to obstetrics—Google Booksat. https://books.google.com/books?hl=en&lr=&id=uMuQ4Q1nR4MC&oi=fnd&pg=PA229&dq=Tjoa+M,+et+al.+Front+Biosci+2007%3B12:2395-2402.&ots=-C5JOUdcoC&sig=2CzwmfFSC05H6wI9eu9dutPFvOo#v=onepage&q&f=false.

  23. Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J. Biomech. Eng. 123:134–144, 2001. https://doi.org/10.1115/1.1351807.

    Article  Google Scholar 

  24. Roberts, J. Endothelial dysfunction in preeclampsia. Semin. Reprod. Med. 16:5–15, 1998.

    Article  Google Scholar 

  25. Silber, H. A., P. Ouyang, D. A. Bluemke, S. N. Gupta, T. K. Foo, and J. A. C. Lima. Why is flow-mediated dilation dependent on arterial size? Assessment of the shear stimulus using phase-contrast magnetic resonance imaging. Am. J. Physiol. Circ. Physiol. 288:H822–H828, 2005.

    Article  Google Scholar 

  26. Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: sixth international bio-fluid mechanics symposium and workshop, March 28–30, 2008 Pasadena, California. Ann. Biomed. Eng. 38:1188–1203, 2010.

    Article  Google Scholar 

  27. Tomimatsu, T., K. Mimura, S. Matsuzaki, M. Endo, K. Kumasawa, and T. Kimura. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. Int. J. Mol. Sci. 20:4246, 2019.

    Article  Google Scholar 

  28. Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45:525–541, 2017.

    Article  Google Scholar 

  29. Whiting, C. H., and K. E. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35:93–116, 2001.

    Article  Google Scholar 

  30. Wiputra, H., C. K. Chen, E. Talbi, G. L. Lim, S. M. Soomar, A. Biswas, C. N. Z. Mattar, D. Bark, H. L. Leo, and C. H. Yap. Human fetal hearts with tetralogy of fallot have altered fluid dynamics and forces. Am. J. Physiol. Hear. Circ. Physiol. 315:H1649–H1659, 2018.

    Article  Google Scholar 

  31. Wiputra, H., G. L. Lim, K. C. Chua, R. Nivetha, S. M. Soomar, A. Biwas, C. N. Z. Mattar, H. L. Leo, and C. H. Yap. Peristaltic-like motion of the human fetal right ventricle and its effects on fluid dynamics and energy dynamics. Ann. Biomed. Eng. 45:2335–2347, 2017.

    Article  Google Scholar 

  32. Zhou, X., L. Yin, L. Xu, and F. Liang. Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: an in vivo measurement-based computational study. J. Biomech. 2020. https://doi.org/10.1016/j.jbiomech.2020.109617.

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was supported by R&D funding from the University of Wisconsin – Madison Obstetrics and Gynecology department and by the NIH Ruth L. Kirschstein National Research Service Award T32 HL 007936 from the National Heart Lung and Blood Institute to the University of Wisconsin-Madison Cardiovascular Research Center (RP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Roldán-Alzate.

Additional information

Associate Editor David Elad oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pewowaruk, R.J., Racine, J., Iruretagoyena, J.I. et al. Ultrasound Based Computational Fluid Dynamics Assessment of Brachial Artery Wall Shear Stress in Preeclamptic Pregnancy. Cardiovasc Eng Tech 11, 760–768 (2020). https://doi.org/10.1007/s13239-020-00488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00488-6

Keywords

Navigation