Skip to main content
Log in

Reducing In-Stent Restenosis Through Novel Stent Flow Field Augmentation

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

In-stent restenosis (ISR), manifested as a re-narrowing of the arterial lumen post-implantation of a stent, is a detrimental limitation of stent technology. Understanding and consequently devising ways of reducing the frequency of ISR has been a continuing goal of research into improved stent designs. The biological processes that can lead to ISR have been found to be partially flow dependent with the local hemodynamics at the arterial wall of crucial importance. This paper investigates these biological processes and their instigating factors. Furthermore, the history and theory behind three stent technologies which endeavour to reduce ISR rates through stent flow field augmentation are presented: a flow divider which increases the blood-flow velocity and consequently the wall shear stress through a stented region, and two novel stent technologies which induce helical flow that mimics the natural blood flow present in healthy arteries. This paper serves as a thorough introduction to both the investigation of ISR, particularly the influence of the local hemodynamics, and to the three novel stent technologies which aim to reduce ISR rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20(2):86–100, 2008.

    Article  Google Scholar 

  2. Bassiouny, H. S., R. H. Song, H. Kocharyan, E. Kins, and S. Glagov. Low flow enhances platelet activation after acute experimental arterial injury. J. Vasc. Surg. 27(5):910–918, 1998.

    Article  Google Scholar 

  3. Bassiouny, H. S., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: mechanical injury or flow induced. J. Vasc. Surg. 15(4):708–716, 1992.

    Article  Google Scholar 

  4. Bayes-Genis, A., A. R. Camrud, M. Jorgenson, J. Donovan, K. L. Shogren, D. R. Holmes, Jr., et al. Pressure rinsing of coronary stents immediately before implantation reduces inflammation and neointimal hyperplasia. J. Am. Coll. Cardiol. 38(2):562–568, 2001.

    Article  Google Scholar 

  5. Beijk, M. A. M., M. Klomp, N. J. W. Verouden, N. van Geloven, K. T. Koch, J. P. S. Henriques, et al. Genous endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study. Eur. Heart J. 31(9):1055–1064, 2009.

    Article  Google Scholar 

  6. Bhargava, B., N. K. Reddy, G. Karthikeyan, R. Raju, S. Mishra, S. Singh, et al. A novel paclitaxel-eluting porous carbon–carbon nanoparticle coated, nonpolymeric cobalt–chromium stent: evaluation in a porcine model. Catheter. Cardiovasc. Interv. 67(5):698–702, 2006.

    Article  Google Scholar 

  7. Brecher, G. A. Experimental evidence of ventricular diastolic suction. Circ. Res. 4(5):513–518, 1956.

    Article  Google Scholar 

  8. Carlier, S. G., L. C. A. van Damme, C. P. Blommerde, J. J. Wentzel, G. van Langehove, S. Verheye, et al. Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation: inhibition through reduction of inflammation? Circulation 107(21):2741–2746, 2003.

    Article  Google Scholar 

  9. Caro, C. G. The dispersion of indicator flowing through simplified models of the circulation and its relevance to velocity profile in blood vessels. J. Physiol. 185(3):501–519, 1966.

    Google Scholar 

  10. Caro, C. G., N. J. Cheshire, and N. Watkins. Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs. J. R. Soc. Interface 2(3):261–266, 2005.

    Article  Google Scholar 

  11. Caro, C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Non-planar curvature and branching of arteries and non-planar-type flow. Proc. Math. Phys. Eng. Sci. 452(1944):185–197, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. Caro, C., J. Fitz-Gerald, and R. Schroter. Arterial wall shear and distribution of early atheroma in man. Nature 13(223):1159–1160, 1969.

    Article  Google Scholar 

  13. Chandran, K. B., A. P. Yoganathan, and S. E. Rittgers. Biofluid Mechanics: The Human Circulation (1st ed.). Boca Raton: CRC Press, 2006.

    Google Scholar 

  14. Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49(25):2379–2393, 2007.

    Article  Google Scholar 

  15. Chen, Z., Y. Fan, X. Deng, and Z. Xu. Swirling flow can suppress flow disturbances in endovascular stents: a numerical study. ASAIO J. 55(6):543–549, 2009.

    Article  Google Scholar 

  16. Chen, H. Y., J. Hermiller, A. K. Sinha, M. Sturek, L. Zhu, and G. S. Kassab. Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis. J. Appl. Physiol. 106(5):1686–1691, 2009.

    Article  Google Scholar 

  17. Cheng, C., D. Tempel, R. van Haperen, A. van der Baan, F. Grosveld, M. J. A. P. Daemen, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113(23):2744–2753, 2006.

    Article  Google Scholar 

  18. Chiastra, C., S. Morlacchi, S. Pereira, G. Dubini, and F. Migliavacca. Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur. J. Mech. B 35:76–84, 2012.

    Article  Google Scholar 

  19. Cookson, A., D. Doorly, and S. Sherwin. Mixing through stirring of steady flow in small amplitude helical tubes. Ann. Biomed. Eng. 37(4):710–721, 2009.

    Article  Google Scholar 

  20. Cookson, A. N., D. J. Doorly, and S. J. Sherwin. Using coordinate transformation of Navier–Stokes equations to solve flow in multiple helical geometries. J. Comput. Appl. Math. 234(7):2069–2079, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  21. Coppola, G., and C. Caro. Oxygen mass transfer in a model three-dimensional artery. J. R. Soc. Interface 5(26):1067–1075, 2008.

    Article  Google Scholar 

  22. Coppola, G., and C. Caro. Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance. J. R. Soc. Interface 6(35):519–528, 2009.

    Article  Google Scholar 

  23. Coughlin, M. F., and G. W. Schmid-Schönbein. Pseudopod Projection and Cell Spreading of Passive Leukocytes in Response to Fluid Shear Stress. Biophys. J . 87(3):2035–2042, 2004.

    Article  Google Scholar 

  24. DePaola, N., M. Gimbrone, P. Davies, and C. Dewey. Vascular endothelium responds to fluid shear stress gradients [published erratum appears in Arterioscler. Thromb. 13(3):465, 1993]. Arterioscl. Thromb. Vasc Biol. 12(11):1254–1257, 1992.

    Google Scholar 

  25. Dichek, D., R. Neville, J. Zwiebel, S. Freeman, M. Leon, and W. Anderson. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 80(5):1347–1353, 1989.

    Article  Google Scholar 

  26. Ding, Z., and M. Friedman. Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis. J. Biomech. Eng. 122(5):488–492, 2000.

    Article  Google Scholar 

  27. Ding, Z., and M. H. Friedman. Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms. Int. J. Cardiac Imaging. 16(5):331–346, 2000.

    Article  Google Scholar 

  28. Ding, Z., H. Zhu, and M. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 30(4):419–429, 2002.

    Article  Google Scholar 

  29. Doorly, D. J., J. Peiró, S. J. Sherwin, O. Shah, C. Caro, M. Tarnawski, et al. (eds.). Helix and model graft flows: MRI measurement and CFD simulations. In: Proceedings of the ASME FED Meeting, 1997.

  30. Doorly, D. J., S. J. Sherwin, P. T. Franke, and J. Peiró. Vortical flow structure identification and flow transport in arteries. Comput. Methods Biomech. Biomed. Eng. 5(3):261, 2002.

    Article  Google Scholar 

  31. Dotter, C. T., and M. P. Judkins. Transluminal treatment of arteriosclerotic obstruction: description of a new technic and a preliminary report of its application. Circulation 30(5):654–670, 1964.

    Article  Google Scholar 

  32. Dumoulin, C., and B. Cochelin. Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33(11):1461–1470, 2000.

    Article  Google Scholar 

  33. Duraiswamy, N., J. M. Cesar, R. T. Schoephoerster, and J. E. Moore. Effects of stent geometry on local flow dynamics and resulting platelet deposition in an in vitro model. Biorheology 45(5):547–562, 2008.

    Google Scholar 

  34. Duraiswamy, N., R. T. Schoephoerster, and J. E. Moore. Comparison of near-wall hemodynamic parameters in stented artery models. J. Biomech. Eng. 131(6):061006, 2009.

    Article  Google Scholar 

  35. Esmon, C. T. Inflammation and thrombosis. J. Thromb. Haemost. 1(7):1343–1348, 2003.

    Article  Google Scholar 

  36. Farb, A., G. Sangiorgi, A. J. Carter, V. M. Walley, W. D. Edwards, R. S. Schwartz, et al. Pathology of acute and chronic coronary stenting in humans. Circulation 99(1):44–52, 1999.

    Article  Google Scholar 

  37. Fischman, D. L., M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. New Engl. J. Med. 331(8):496–501, 1994.

    Article  Google Scholar 

  38. Frazin, L. J., G. Lanza, M. Vonesh, F. Khasho, C. Spitzzeri, S. McGee, et al. Functional chiral asymmetry in descending thoracic aorta. Circulation 82(6):1985–1994, 1990.

    Article  Google Scholar 

  39. Frazin, L. J., M. J. Vonesh, K. B. Chandran, T. Shipkowitz, A. S. Yaacoub, and D. D. McPherson. Confirmation and initial documentation of thoracic and abdominal aortic helical flow: an ultrasound study. ASAIO J. 42(6):951–956, 1996.

    Article  Google Scholar 

  40. Fukuda, S., T. Yasu, D. N. Predescu, and G. W. Schmid-Schönbein. Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ. Res. 86(1):e13–e18, 2000.

    Article  Google Scholar 

  41. Gaglia, Jr., M. A., R. Torguson, Z. Xue, M. A. Gonzalez, S. D. Collins, I. Ben-Dor, et al. Insurance type influences the use of drug-eluting stents. JACC: Cardiovasc. Interv. 3(7):773–779, 2010.

    Article  Google Scholar 

  42. Garg, S., and P. W. Serruys. Coronary stents: current status. J. Am. Coll. Cardiol. 56(10 Suppl):S1–S42, 2010.

    Article  Google Scholar 

  43. Garg, S., and P. W. Serruys. Coronary stents: looking forward. J. Am. Coll. Cardiol. 56(10 Suppl):S43–S78, 2010.

    Article  Google Scholar 

  44. Geary, R., and A. Clowes. Epidemiology and pathogenesis of restenosis. In: Essentials of Restenosis for the Interventional Cardiologist, edited by H. J. Duckers, E. G. Nabel, and P. W. Serruys. Totowa: Humana Press, 2007.

    Google Scholar 

  45. Geary, R., T. Kohler, S. Vergel, T. Kirkman, and A. Clowes. Time course of flow-induced smooth muscle cell proliferation and intimal thickening in endothelialized baboon vascular grafts. Circ. Res. 74(1):14–23, 1994.

    Article  Google Scholar 

  46. Gorbet, M. B., and M. V. Sefton. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25(26):5681–5703, 2004.

    Article  Google Scholar 

  47. Grigioni, M., C. Daniele, U. Morbiducci, C. Del Gaudio, G. D’Avenio, A. Balducci, et al. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J. Biomech. 38(7):1375–1386, 2005.

    Article  Google Scholar 

  48. Grotendorst, G. R., T. Chang, H. E. J. Seppä, H. K. Kleinman, and G. R. Martin. Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J. Cell. Physiol. 113(2):261–266, 1982.

    Article  Google Scholar 

  49. Grüntzig, A. Transluminal dilation of coronary-artery stenosis. The Lancet. 311(8058):263, 1978.

    Article  Google Scholar 

  50. Grüntzig, A., and D. Kumpe. Technique of percutaneous transluminal angioplasty with the Gruntzig ballon catheter. Am. J. Roentgenol. 132(4):547–552, 1979.

    Google Scholar 

  51. Grüntzig, A., W. Vetter, B. Meier, U. Kuhlmann, U. Lüolf, and W. Siegenthaler. Treatment of renovascular hypertension with percutaneous transluminal dilation of a renal-artery stenosis. The Lancet. 311(8068):801–802, 1978.

    Article  Google Scholar 

  52. Gyongyosi, M., P. Yang, A. Khorsand, D. Glogar, On behalf of the Austrian Wiktor Stent Study Group, European Paragon Stent Investigators. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. J. Am. Coll. Cardiol. 35(6):1580–1589, 2000.

    Google Scholar 

  53. Han, C. I., G. R. Campbell, and J. H. Campbell. Circulating bone marrow cells can contribute to neointimal formation. J. Vasc. Res. 38(2):113–119, 2001.

    Article  Google Scholar 

  54. Harnek, J., E. Zoucas, E. Carlemalm, and W. Cwikiel. Differences in endothelial injury after balloon angioplasty, insertion of balloon-expanded stents or release of self-expanding stents: an electron microscopic experimental study. Cardiovasc. Interv. Radiol. 22(1):56–61, 1999.

    Article  Google Scholar 

  55. Haruguchi, H., and S. Teraoka. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J. Artif. Organs 6(4):227–235, 2003.

    Article  Google Scholar 

  56. Haude, M., R. Erbel, H. Issa, and J. Meyer J. Quantitative analysis of elastic recoil after balloon angioplasty and after intracoronary implantation of balloon-expandable Palmaz-Schatz stents. J. Am. Coll. Cardiol. 21(1):26–34, 1993.

    Article  Google Scholar 

  57. He, Y., N. Duraiswamy, A. O. Frank, and J. J. E. Moore. blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J. Biomech. Eng. 127(4):637–647, 2005.

    Article  Google Scholar 

  58. Helmlinger, G., R. V. Geifer, S. Schreck, and R. M. Nerem. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J. Biomech. Eng. 113(2):123–131, 1991.

    Article  Google Scholar 

  59. Hofer, M., G. Rappitsch, K. Perktold, W. Trubel, and H. Schima. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J. Biomech. 29(10):1297–1308, 1996.

    Article  Google Scholar 

  60. Holmes, Jr., D. R., D. J. Kereiakes, S. Garg, P. W. Serruys, G. J. Dehmer, S. G. Ellis, et al. Stent thrombosis. J. Am. Coll. Cardiol. 56(17):1357–1365, 2010.

    Article  Google Scholar 

  61. Hong, M.-K., S.-W. Park, C. W. Lee, D.-H. Kang, J.-K. Song, J–. J. Kim, et al. Long-term outcomes of minor plaque prolapsed within stents documented with intravascular ultrasound. Catheter. Cardiovasc. Interv. 51(1):22–26, 2000.

    Article  Google Scholar 

  62. Houston, J. G., M. Bonneau, C. Kang, P. A. Stonebridge, and J. Dick. Reducing intimal thickening and arterial wall stresses downstream to a spiral flow inducing stent in a carotid arterial stenosis porcine model. CIRSE 2008, Copenhagen, Denmark, 2008.

  63. Houston, J. G., S. J. Gandy, W. Milne, J. B. C. Dick, J. J. F. Belch, and P. A. Stonebridge. Spiral laminar flow in the abdominal aorta: a predictor of renal impairment deterioration in patients with renal artery stenosis? Nephrol. Dialysis Transplant. 19(7):1786–1791, 2004.

    Article  Google Scholar 

  64. Houston, J. G., R. Hood, P. A. Stonebridge, and A. Thomson (inventors). Tayside Flow Technologies Ltd, Assignee. Method of Determining the Helix Angle of a Helical Formation for a Conduit. United States of America Patent, US7721767B2, 2010.

  65. Houston, J. G., P. A. Stonebridge, J. Dick, R. Hood, A. Johnstone, C. Sarran, et al. (inventors). An insert for a Stent 2007.

  66. Hsu, P–. P., S. Li, Y.-S. Li, S. Usami, A. Ratcliffe, X. Wang, et al. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem. Biophys. Res. Commun. 285(3):751–759, 2001.

    Article  Google Scholar 

  67. Huijbregts, H. J. T. A. M., P. J. Blankestijn, C. G. Caro, N. J. W. Cheshire, M. T. C. Hoedt, R. P. Tutein Nolthenius, et al. A helical PTFE arteriovenous access graft to swirl flow across the distal anastomosis: results of a preliminary clinical study. Eur. J. Vasc. Endovasc. Surg. 33(4):472–475, 2007.

    Article  Google Scholar 

  68. Inoue, T., K. Croce, T. Morooka, M. Sakuma, K. Node, and D. I. Simon. Vascular inflammation and repair: implications for re-endothelialization, restenosis, and stent thrombosis. J. Am. Coll. Cardiol. Interv. 4(10):1057–1066, 2011.

    Google Scholar 

  69. Inoue, T., M. Sata, Y. Hikichi, R. Sohma, D. Fukuda, T. Uchida, et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation. Circulation 115(5):553–561, 2007.

    Article  Google Scholar 

  70. Jang, I. -K., G. Tearney, and B. Bouma. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography. Circulation 104(22):2754, 2001.

    Article  Google Scholar 

  71. Jiménez, J., and P. F. Davies. Hemodynamically driven stent strut design. Ann. Biomed. Eng. 37(8):1483–1494, 2009.

    Article  Google Scholar 

  72. Joner, M., A. V. Finn, A. Farb, E. K. Mont, F. D. Kolodgie, E. Ladich, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48(1):193–202, 2006.

    Article  Google Scholar 

  73. Joner, M., G. Nakazawa, A. V. Finn, S. C. Quee, L. Coleman, E. Acampado, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J. Am. Coll. Cardiol. 52(5):333–342, 2008.

    Article  Google Scholar 

  74. Kastrati, A., J. Dirschinger, P. Boekstegers, S. Elezi, H. Schühlen, J. Pache, et al. Influence of stent design on 1-year outcome after coronary stent placement: a randomized comparison of five stent types in 1,147 unselected patients. Catheter. Cardiovasc. Interv. 50(3):290–297, 2000.

    Article  Google Scholar 

  75. Kilner, P., G. Yang, R. Mohiaddin, D. Firmin, and D. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88(5):2235–2247, 1993.

    Article  Google Scholar 

  76. Kleinstreuer, C., S. Hyun, J. R. Buchanan, P. W. Longest, J. P. Archie, and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29(1):1–64, 2001.

    Article  Google Scholar 

  77. Krams, R. ARED Flow Divider. Personal Communication, 2011.

  78. Krone, R. J., S. V. Rao, D. Dai, H. V. Anderson, E. D. Peterson, M. A. Brown, et al. Acceptance, panic, and partial recovery: the pattern of usage of drug-eluting stents after introduction in the U.S. (A report from the American College of Cardiology/National Cardiovascular Data Registry). JACC Cardiovasc. Interv. 3(9):902–910, 2010.

    Article  Google Scholar 

  79. Ku, D., D. Giddens, C. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5(3):293–302, 1985.

    Article  Google Scholar 

  80. LaDisa, J., L. Olson, H. Douglas, D. Warltier, J. Kersten, and P. Pagel. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed. Eng. Online 5(1):40, 2006.

    Article  Google Scholar 

  81. LaDisa, Jr., J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, et al. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97(1):424–430, 2004.

    Article  Google Scholar 

  82. LaDisa, J., L. Olson, D. Hettrick, D. Warltier, J. Kersten, and P. Pagel. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening. Biomed. Eng. Online 4(1):59, 2005.

    Article  Google Scholar 

  83. Lee, E. S., M. P. Caldwell, A. S. Tretinyak, and S. M. Santilli. Supplemental oxygen controls cellular proliferation and anastomotic intimal hyperplasia at a vascular graft-to-artery anastomosis in the rabbit. J. Vasc. Surg. 33(3):608–613, 2001.

    Article  Google Scholar 

  84. Leung, D., S. Glagov, and M. Mathews. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191(4226):475–477, 1976.

    Article  Google Scholar 

  85. Li, Y., K. G. Neoh, and E.-T. Kang. Plasma protein adsorption and thrombus formation on surface functionalized polypyrrole with and without electrical stimulation. J. Colloid Interface Sci. 275(2):488–495, 2004.

    Article  Google Scholar 

  86. Liu, X., F. Pu, Y. Fan, X. Deng, D. Li, and S. Li. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297(1):H163–H170, 2009.

    Article  Google Scholar 

  87. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. (JAMA) 282(21):2035–2042, 1999.

    Article  Google Scholar 

  88. Malek, A. M., and S. Izumo. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell Sci. 109(4):713–726, 1996.

    Google Scholar 

  89. Mallinger, F., and D. Drikakis. Laminar-to-turbulent transition in pulsatile flow through a stenosis. Biorheology. 39(3):437–441, 2002.

    Google Scholar 

  90. Marinelli, R., B. Fuerst, H. Zee, A. McGinn, and W. Marinelli. The heart is not a pump: a refutation of the pressure propulsion premise of heart function. Front. Perspect. 5(1):15–24, 1995.

    Google Scholar 

  91. Marinelli, R., D. G. Penney, W. Marinelli, and F. A. Baciewicz, Jr. Rotary motion in the heart and blood vessels: a review. J. Appl. Cardiol. 6(6):421–431, 1991.

    Google Scholar 

  92. Martin, D. M., and F. J. Boyle. Drug-eluting stents for coronary artery disease: a review. Med. Eng. Phys. 33(2):148–163, 2010.

    Article  Google Scholar 

  93. Massai, D., G. Soloperto, D. Gallo, X. Y. Xu, and U. Morbiducci. Shear-induced platelet activation and its relationship with blood flow topology in a numerical model of stenosed carotid bifurcation. Eur. J. Mech. B 35:92–101, 2012.

    Article  Google Scholar 

  94. McLaren, M., and G. Kennedy. Endothelium II: inflammatory response. Surgery 23(1):1–6, 2005.

    Article  Google Scholar 

  95. Mehran, R., G. Dangas, A. S. Abizaid, G. S. Mintz, A. J. Lansky, L. F. Satler, et al. Angiographic patterns of in-stent restenosis : classification and implications for long-term outcome. Circulation 100(18):1872–1878, 1999.

    Article  Google Scholar 

  96. Moazzam, F., F. A. DeLano, B. W. Zweifach, and G. W. Schmid-Schönbein. The leukocyte response to fluid stress. Proc. Natl Acad. Sci. USA 94(10):5338–5343, 1997.

    Article  Google Scholar 

  97. Moore, J., J. Soares, and K. Rajagopal. Biodegradable Stents: biomechanical Modeling Challenges and Opportunities. Cardiovasc. Eng. Technol. 1(1):52–65, 2010.

    Article  Google Scholar 

  98. Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech. 40(3):519–534, 2007.

    Article  Google Scholar 

  99. Morbiducci, U., R. Ponzini, M. Nobili, D. Massai, F. M. Montevecchi, D. Bluestein, et al. Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J. Biomech. 42(12):1952–1960, 2009.

    Article  Google Scholar 

  100. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. Montevecchi, et al. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10(3):339–355, 2011.

    Article  Google Scholar 

  101. Murphy, J., and F. Boyle. A numerical methodology to fully elucidate the altered wall shear stress in a stented coronary artery. Cardiovasc. Eng. Technol. 1(4):256–268, 2010.

    Article  Google Scholar 

  102. Nakamura, M., P. G. Yock, H. N. Bonneau, K. Kitamura, T. Aizawa, H. Tamai, et al. Impact of peri-stent remodeling on restenosis: a volumetric intravascular ultrasound study. Circulation 103(17):2130–2132, 2001.

    Article  Google Scholar 

  103. Nebeker, J. R., R. Virmani, C. L. Bennett, J. M. Hoffman, M. H. Samore, J. Alvarez, et al. Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) Project. J. Am. Coll. Cardiol. 47(1):175–181, 2006.

    Article  Google Scholar 

  104. Nelson, R. Spiral Flow. Personal Correspondence with author, 2011.

  105. Niccoli, G., G. A. Sgueglia, and F. Crea. The emerging role of allergic inflammation in adverse reactions after coronary stent implantation. Atherosclerosis. 217(1):70–71, 2011.

    Article  Google Scholar 

  106. Padfield, G. J., D. E. Newby, and N. L. Mills. Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. J. Am. Coll. Cardiol. 55(15):1553–1565, 2010.

    Article  Google Scholar 

  107. Papafaklis, M. I., C. V. Bourantas, P. E. Theodorakis, C. S. Katsouras, D. I. Fotiadis, and L. K. Michalis. Relationship of shear stress with in-stent restenosis: bare metal stenting and the effect of brachytherapy. Int. J. Cardiol. 134(1):25–32, 2009.

    Article  Google Scholar 

  108. Papaharilaou, Y., D. J. Doorly, and S. J. Sherwin. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J. Biomech. 35(9):1225–1239, 2002.

    Article  Google Scholar 

  109. Paul, M. C., and A. Larman. Investigation of spiral blood flow in a model of arterial stenosis. Med. Eng. Phys. 31(9):1195–1203, 2009.

    Article  Google Scholar 

  110. Phelps, J. E., and N. DePaola. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am. J. Physiol. Heart Circ. Physiol. 278(2):H469–H476, 2000.

    Google Scholar 

  111. Ponde, C. K., C. N. Aroney, P. T. McEniery, and J. H. N. Bett. Plaque prolapse between the struts of the intracoronary Palmaz–Schatz stent: report of two cases with a novel treatment of this unusual problem. Catheter. Cardiovasc. Diagn. 40(4):353–357, 1997.

    Article  Google Scholar 

  112. Pritchard, W. F., P. F. Davies, Z. Derafshi, D. C. Polacek, R. Tsao, R. O. Dull, et al. Effects of wall shear stress and fluid recirculation on the localization of circulating monocytes in a three-dimensional flow model. J. Biomech. 28(12):1459–1469, 1995.

    Article  Google Scholar 

  113. Richter, Y., and E. R. Edelman. Cardiology is flow. Circulation 113(23):2679–2682, 2006.

    Article  Google Scholar 

  114. Roger, V. L., A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209, 2011.

    Article  Google Scholar 

  115. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91(12):2995–3001, 1995.

    Article  Google Scholar 

  116. Rogers, C., S. Parikh, P. Seifert, and E. R. Edelman. Endogenous cell seeding: remnant endothelium after stenting enhances vascular repair. Circulation 94(11):2909–2914, 1996.

    Article  Google Scholar 

  117. Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon–artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84(4):378–383, 1999.

    Article  Google Scholar 

  118. Rouleau, L., I. Copland, J.-C. Tardif, R. Mongrain, and R. Leask. Neutrophil adhesion on endothelial cells in a novel asymmetric stenosis model: effect of wall shear stress gradients. Ann. Biomed. Eng. 38(9):2791–2804, 2010.

    Article  Google Scholar 

  119. Rouleau, L., M. Farcas, J.-C. Tardif, R. Mongrain, and R. L. Leask. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients. J. Biomech. Eng. 132(8):081013, 2010.

    Article  Google Scholar 

  120. Rouleau, L., J. Rossi, and R. L. Leask. The response of human aortic endothelial cells in a stenotic hemodynamic environment: effect of duration, magnitude, and spatial gradients in wall shear stress. J. Biomech. Eng. 132(7):071015, 2010.

    Article  Google Scholar 

  121. Rubanyi, G. M. The role of endothelium in cardiovascular homeostasis and diseases. J. Cardiovasc. Pharmacol. 22:S1–S14, 1993.

    Article  Google Scholar 

  122. Sanmartín, M., J. Goicolea, C. García, J. García, A. Crespo, J. Rodríguez, et al. Influence of shear stress on in-stent restenosis: in vivo study using 3D reconstruction and computational fluid dynamics. Rev. Esp. Cardiol. 59(1):20–27, 2006.

    Article  Google Scholar 

  123. Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45(2):312–315, 2005.

    Article  Google Scholar 

  124. Schoephoerster, R., F. Oynes, G. Nunez, M. Kapadvanjwala, and M. Dewanjee. Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces. Arterioscl. Thromb. Vasc. Biol. 13(12):1806–1813, 1993.

    Article  Google Scholar 

  125. Segadal, L., and K. Matre. Blood velocity distribution in the human ascending aorta. Circulation 76(1):90–100, 1987.

    Article  Google Scholar 

  126. Serruys, P. W., P. de Jaegere, F. Kiemeneij, C. Macaya, W. Rutsch, G. Heyndrickx, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N. Engl. J. Med. 331(8):489–495, 1994.

    Article  Google Scholar 

  127. Shi, Z.-D., G. Abraham, and J. M. Tarbell. Shear stress modulation of smooth muscle cell marker genes in 2-D and 3-D depends on mechanotransduction by heparan sulfate proteoglycans and ERK1/2. PLoS ONE 5(8):e12196, 2010.

    Article  Google Scholar 

  128. Shi, H.-J., A.-H. Cao, and G.-J. Teng. Seeding endothelial progenitor cells on a self-expanding metal stent: an in vitro study. J. Vasc. Interv. Radiol. 21(7):1061–1065, 2010.

    Article  Google Scholar 

  129. Shigematsu, K., H. Yasuhara, H. Shigematsu, and T. Muto. Direct and indirect effects of pulsatile shear stress on the smooth muscle cell. Int. Angiol. 19:39–46, 2000.

    Google Scholar 

  130. Shinke, T., K. Robinson, M. G. Burke, P. Gilson, L. P. Mullins, N. O’Brien, et al. Abstract 6059: novel helical stent design elicits swirling blood flow pattern and inhibits neointima formation in porcine carotid arteries. Circulation 118:S1054, 2008.

    Google Scholar 

  131. Simper, D., P. G. Stalboerger, C. J. Panetta, S. Wang, and N. M. Caplice. Smooth muscle progenitor cells in human blood. Circulation 106(10):1199–1204, 2002.

    Article  Google Scholar 

  132. Sprague, E. A., J. Luo, and J. C. Palmaz. Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J. Vasc. Interv. Radiol. 8(1):83–92, 1997.

    Article  Google Scholar 

  133. Sprague, E. A., and J. C. Palmaz. A model system to assess key vascular responses to biomaterials. J. Endovasc. Ther. 12(5):594–604, 2005.

    Article  Google Scholar 

  134. Stergiopulos, N. Inventor Implant with deflector for intravascular dilation patent EP 0989830 B1, 2000.

  135. Sterpetti, A. V., A. Cucina, A. Fragale, S. Lepidi, A. Cavallaro, and L. Santoro-D’Angelo. Shear stress influences the release of platelet derived growth factor and basic fibroblast growth factor by arterial smooth muscle cells. Eur. J. Vasc. Surg. 8(2):138–142, 1994.

    Article  Google Scholar 

  136. Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark, M. Sonka, A. Wahle, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108(4):438–444, 2003.

    Article  Google Scholar 

  137. Stone, G. W., J. W. Moses, S. G. Ellis, J. Schofer, K. D. Dawkins, M.-C. Morice, et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356(10):998–1008, 2007.

    Article  Google Scholar 

  138. Stonebridge, P. A. Three-dimensional blood flow dynamics: spiral/helical laminar flow. Methodist DeBakey Cardiovasc. J. 7(1):21–26, 2011.

    Google Scholar 

  139. Stonebridge, P. A., and C. M. Brophy. Spiral laminar flow in arteries? Lancet 338(8779):1360–1361, 1991.

    Article  Google Scholar 

  140. Stonebridge, P. A., C. Buckley, A. Thompson, J. Dick, G. Hunter, J. A. Chudek, et al. Non spiral and spiral (helical) flow patterns in stenoses. In vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computable fluid dynamics modeling. Int. Angiol. 23(3):276–283, 2004.

    Google Scholar 

  141. Stonebridge, P. A., P. R. Hoskins, P. L. Allan, and J. F. Belch. Spiral laminar flow in vivo. Clin. Sci. 91(1):17–21, 1996.

    Google Scholar 

  142. Sumagin, R., K. A. Lamkin-Kennard, and I. H. Sarelius. A Separate Role for ICAM-1 and Fluid Shear in Regulating Leukocyte Interactions with Straight Regions of Venular Wall and Venular Convergences. Microcirculation. 16(6):508–520, 2009.

    Article  Google Scholar 

  143. Suo, J. Investigation of blood flow patterns and hemodynamics in the human ascending aorta and major trucks of the right and left coronary arteries using magnetic resonance imaging and computational fluid dynamics. Georgia: Georgia Institute of Technology, 2005.

    Google Scholar 

  144. Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5(1):79–118, 2003.

    Article  Google Scholar 

  145. Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, Jr., and C. F. Dewey, Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscl. Thromb. Vasc Biol. 17(11):3102–3106, 1997.

    Article  Google Scholar 

  146. Texon, M. Hemodynamic basis of atherosclerosis with critique of the cholesterol-heart disease hypothesis. Cardiovasc. Eng. 1(1):57–58, 2001.

    Article  Google Scholar 

  147. Torrent-Guasp, F., M. Ballester, G. D. Buckberg, F. Carreras, A. Flotats, I. Carrio, et al. Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J. Thorac. Cardiovasc. Surg. 122(2):389–392, 2001.

    Article  Google Scholar 

  148. Ueba, H., M. Kawakami, and T. Yaginuma. Shear stress as an inhibitor of vascular smooth muscle cell proliferation: role of transforming growth factor-beta1 and tissue-type plasminogen activator. Arterioscl. Thromb. Vasc. Biol. 17(8):1512–1516, 1997.

    Article  Google Scholar 

  149. van der Giessen, W. J., A. M. Lincoff, R. S. Schwartz, H. M. M. van Beusekom, P. W. Serruys, D. R. Holmes, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94(7):1690–1697, 1996.

    Article  Google Scholar 

  150. Vermassen, F., and P. A. Stonebridge. Spiral laminar flow arterial grafts: improved early clinical results and theoretical basis. 36th Annual Symposium on Vascular and Endovascular Issues, 19 November 2008, New York, 2008.

  151. Virmani, R., G. Guagliumi, A. Farb, G. Musumeci, N. Grieco, T. Motta, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent. Circulation 109(6):701–705, 2004.

    Article  Google Scholar 

  152. Wang, H., S. Yan, H. Chai, G. M. Riha, M. Li, Q. Yao, et al. Shear stress induces endothelial transdifferentiation from mouse smooth muscle cells. Biochem. Biophys. Res. Commun. 346(3):860–865, 2006.

    Article  Google Scholar 

  153. Wentzel, J. J., F. J. H. Gijsen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodeling and neointimal formation. J. Biomech. 36(5):681–688, 2003.

    Article  Google Scholar 

  154. Wentzel, J. J., R. Krams, J. C. H. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van der Giessen, et al. Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation 103(13):1740–1745, 2001.

    Article  Google Scholar 

  155. Whitcher, F. D. Simulation of in vivo loading conditions of nitinol vascular stent structures. Comput. Struct. 64(5–6):1005–1011, 1997.

    Article  MATH  Google Scholar 

  156. Windecker, S., I. Mayer, G. De Pasquale, W. Maier, O. Dirsch, P. De Groot, et al. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation 104(8):928–933, 2001.

    Article  Google Scholar 

  157. Zabielski, L., and A. J. Mestel. Helical flow around arterial bends for varying body mass. J. Biomech. Eng. 122(2):135–142, 2000.

    Article  Google Scholar 

  158. Zhan, F., Y. Fan, and X. Deng. Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: its implication in the design of small-caliber arterial grafts. Thromb. Res. 125(5):413–418, 2010.

    Article  Google Scholar 

  159. Zheng, T., Y. Fan, Y. Xiong, W. Jiang, and X. Deng. Hemodynamic performance study on small diameter helical grafts. ASAIO J. 55(3):192–199, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to express his appreciation to the ABBEST PhD Scholarship Programme at Dublin Institute of Technology for its support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin A. Murphy.

Additional information

Associate Editor Bruce H. KenKnight oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, E.A., Boyle, F.J. Reducing In-Stent Restenosis Through Novel Stent Flow Field Augmentation. Cardiovasc Eng Tech 3, 353–373 (2012). https://doi.org/10.1007/s13239-012-0109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-012-0109-3

Keywords

Navigation