Skip to main content
Log in

Left Ventricular Vortex Under Mitral Valve Edge-to-Edge Repair

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Mitral valve (MV) edge-to-edge repair (ETER) changes MV geometry by approximation of MV leaflets, and impacts left ventricle (LV) filling fluid mechanics. The purpose of this study was to investigate LV vortex with MV ETER during diastole. A computational MV–LV model was developed with MV ETER at the central free edges of the anterior and posterior leaflets. It was supposed that LV would elongate apically during diastole. The elongation deformation was controlled by the intraventricular flow rate. MV leaflets were modeled as a semi-prolate sphere with two symmetrical circular orifices and fixed at the maximum valve opening. MV chordae were neglected. FLUENT was used to simulate blood flow through the MV and in the LV. MV ETER generated two jets deflected laterally toward the LV wall in rapid LV filling. The jets impinged the LV wall obliquely and moved apically along the LV wall. Jet energy was primarily lost near the impingement. The jet from each MV orifice was surrounded by a vortex ring. The two vortex rings dissipated at the end of diastole. The total energy loss increased inversely with the MV orifice area. The atrio-ventricular pressure gradient was adverse near the end of diastole and possibly in diastasis. Reduction of the total orifice area led to more increment in the transmitral pressure drop than in the transmitral velocity. In conclusion, during diastole, two deflected jets from the MV under ETER impinged the LV wall. Major energy loss occurred around the jet impingement. Two vortex rings dissipated at the end of diastole with little storage of inflow energy for blood ejection in the following process of systole. MV ETER increased energy loss and lowered LV filling efficiency. The maintaining of a larger orifice area after ETER might not significantly increase energy loss in the LV during diastole and the transmitral pressure drop. The adverse pressure gradient from the atrium to the LV might be the mechanism of MV closure in the late diastole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alfieri, O., F. Maisano, M. De Bonis, P. L. Stefano, L. Torracca, M. Oppizzi, et al. The double-orifice technique in mitral valve repair: a simple solution for complex problems. J. Thorac. Cardiovasc. Surg. 122(4):674–681, 2001.

    Article  Google Scholar 

  2. Avanzini, A. A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve. J. Biomech. Eng. 130(3):031015, 2008.

    Article  Google Scholar 

  3. Bellhouse, B. J. Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc. Res. 6(2):199–210, 1972.

    Article  MathSciNet  Google Scholar 

  4. Claessens, T. E., J. De Sutter, D. Vanhercke, P. Segers, and P. R. Verdonck. New echocardiographic applications for assessing global left ventricular diastolic function. Ultrasound Med. Biol. 33(6):823–841, 2007.

    Article  Google Scholar 

  5. Domenichini, F., G. Querzoli, A. Cenedese, and G. Pedrizzetti. Combined experimental and numerical analysis of the flow structure into the left ventricle. J. Biomech. 40(9):1988–1994, 2007.

    Article  Google Scholar 

  6. Faludi, R., M. Szulik, J. D’Hooge, P. Herijgers, F. Rademakers, G. Pedrizzetti, et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139(6):1501–1510, 2010.

    Article  Google Scholar 

  7. Fucci, C., L. Sandrelli, A. Pardini, L. Torracca, M. Ferrari, and O. Alfieri. Improved results with mitral valve repair using new surgical techniques. Eur. J. Cardiothorac. Surg. 9(11):621–626, 1995; discuss 6–7.

    Article  Google Scholar 

  8. Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl Acad. Sci. USA 103(16):6305–6308, 2006; PMCID: 1458873.

    Article  Google Scholar 

  9. Gharib, M., E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–140, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  10. Hong, G. R., G. Pedrizzetti, G. Tonti, P. Li, Z. Wei, J. K. Kim, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging 1(6):705–717, 2008.

    Article  Google Scholar 

  11. Jeong, J., and F. Hussain. On the identification of a vortex. J. Fluid Mech. 285:69–94, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  12. Kheradvar, A., M. Milano, and M. Gharib. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J. 53(1):8–16, 2007.

    Article  Google Scholar 

  13. Kilner, P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404(6779):759–761, 2000.

    Article  Google Scholar 

  14. Kim, W. Y., P. G. Walker, E. M. Pedersen, J. K. Poulsen, S. Oyre, K. Houlind, et al. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 26(1):224–238, 1995.

    Article  Google Scholar 

  15. Kolar, V. Vortex identification: new requirements and limitations. Int. J. Heat Fluid Flow 28(4):638–652, 2007.

    Article  Google Scholar 

  16. Kunzelman, K. S., R. P. Cochran, E. D. Verrier, and R. C. Eberhart. Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3(5):491–496, 1994.

    Google Scholar 

  17. Maisano, F., A. Redaelli, G. Pennati, R. Fumero, L. Torracca, and O. Alfieri. The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model. Eur. J. Cardiothorac. Surg. 15(4):419–425, 1999.

    Article  Google Scholar 

  18. Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95(10):108101, 2005.

    Article  Google Scholar 

  19. Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38(3):769–773, 2010.

    Article  Google Scholar 

  20. Pierrakos, O., and P. P. Vlachos. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J. Biomech. Eng. 128(4):527–539, 2006.

    Article  Google Scholar 

  21. Pierrakos, O., P. P. Vlachos, and D. P. Telionis. Time-resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. J. Biomech. Eng. 126(6):714–726, 2004.

    Article  Google Scholar 

  22. Redaelli, A., G. Guadagni, R. Fumero, F. Maisano, and O. Alfieri. A computational study of the hemodynamics after “edge-to-edge” mitral valve repair. J. Biomech. Eng. 123(6):565–570, 2001.

    Article  Google Scholar 

  23. Reul, H., N. Talukder, and E. W. Muller. Fluid mechanics of the natural mitral valve. J. Biomech. 14(5):361–372, 1981.

    Article  Google Scholar 

  24. Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3):503–515, 2009.

    Article  Google Scholar 

  25. Shi, L., and Z. He. Hemodynamics of the mitral valve under edge-to-edge repair: an in vitro steady flow study. J. Biomech. Eng. 131(5):051010, 2009.

    Article  MathSciNet  Google Scholar 

  26. Stoylen, A., S. Slordahl, G. K. Skjelvan, A. Heimdal, and T. Skjaerpe. Strain rate imaging in normal and reduced diastolic function: comparison with pulsed Doppler tissue imaging of the mitral annulus. J. Am. Soc. Echocardiogr. 14(4):264–274, 2001.

    Article  Google Scholar 

  27. Vigmond, E. J., C. Clements, D. M. McQueen, and C. S. Peskin. Effect of bundle branch block on cardiac output: a whole heart simulation study. Prog. Biophys. Mol. Biol. 97(2–3):520–542, 2008.

    Article  Google Scholar 

  28. Xiong, F., J. H. Yeo, C. K. Chong, Y. L. Chua, K. H. Lim, E. T. Ooi, et al. Transection of anterior mitral basal stay chords alters left ventricular outflow dynamics and wall shear stress. J. Heart Valve Dis. 17(1):54–61, 2008; discussion.

    Google Scholar 

  29. Yang, G. Z., R. H. Mohiaddin, P. J. Kilner, and D. N. Firmin. Vortical flow feature recognition: a topological study of in vivo flow patterns using MR velocity mapping. J. Comput. Assist. Tomogr. 22(4):577–586, 1998.

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant of Beginning-Grant-in-Aid from the American Heart Association, South Central Affiliate (Grant No. 0665055Y), and by an Exploratory/Developmental Research Grant Award from the National Heart, Lung, and Blood Institute (Grant No. R21HL102526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoming He.

Additional information

Associate Editor Karyn Kunzelman oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Shi, L., Parameswaran, S. et al. Left Ventricular Vortex Under Mitral Valve Edge-to-Edge Repair. Cardiovasc Eng Tech 1, 235–243 (2010). https://doi.org/10.1007/s13239-010-0022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-010-0022-6

Keywords

Navigation