Skip to main content
Log in

Cytotoxic and mutagenic effects of green silver nanoparticles in cancer and normal cells: a brief review

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Applications of silver nanoparticles (AgNPs) have revolutionized the medicinal industry. Due to small size (1–100 nm) these nanoparticles are able to cross cell and nuclear membrane and induce cyto/genotoxicity. Green synthesized (plant based) AgNPs (GSAgNPs) have emerged as alternative antimicrobial agent to chemically synthesized nanoparticles assuming their methods of synthesis will be environment friendly and non toxic. In this review we report that the GSAgNPs were found to be cytotoxic and genotoxic to different cancer cell lines. They affected cell proliferation caused apoptosis and cell death of human cancer cells but did not cause such damages to normal human peripheral blood lymphocyte cells. This property can be utilized in cancer therapeutics to overcome the major drawbacks of chemotherapeutics with surface modifications of the nanoparticles by adding functionalized AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol. 2008;233(3):404–10.

    CAS  PubMed  Google Scholar 

  2. AlSalhi MS, Elangovan K, Ranjitsingh AJ, Murali P, Devanesan S. Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial, antioxidant and antitumor activity. Saudi J Biol Sci. 2019;26:1–9.

    Google Scholar 

  3. Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975;31(6):347–63.

    CAS  PubMed  Google Scholar 

  4. Anandan M, Poorani G, Boomi P, Varunkumar K, Anand K, Chuturgoon AA, et al. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem. 2019;80(1):80–8.

    CAS  Google Scholar 

  5. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008;3(2):279–90.

    Google Scholar 

  6. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. Burns. 2007;33(2):139–48.

    PubMed  Google Scholar 

  7. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R. Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules. 2015;20(2):2693–706.

    PubMed  PubMed Central  Google Scholar 

  8. Baharara J, Ramezani T, Hosseini N, Mousavi M. Silver nanoparticles synthesized coating with Zataria multiflora leaves extract induced apoptosis in HeLa cells through p53 activation. Iran J Pharm Res. 2018;17(2):627.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bandyopadhyay A, Banerjee PP, Shaw P, Mondal MK, Das VK, Chowdhury P, et al. Cytotoxic and mutagenic effects of Thuja occidentalis mediated silver nanoparticles on human peripheral blood lymphocytes. Mater Focus. 2017;6(3):290–6.

    CAS  Google Scholar 

  10. Banerjee PP, Bandyopadhyay A, Harsha SN, Policegoudra RS, Bhattacharya S, Karak N, et al. Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer. 2017;9:265.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Barua S, Banerjee PP, Sadhu A, Sengupta A, Chatterjee S, Sarkar S, et al. Silver nanoparticles as antibacterial and anticancer materials against human breast, cervical and oral cancer cells. J Nanosci Nanotechnol. 2017;17(2):968–76.

    CAS  PubMed  Google Scholar 

  12. Bethu MS, Netala VR, Domdi L, Tartte V, Janapala VR. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: an insight into the mechanism. Artif Cells Nanomed Biotechnol. 2018;46:104–14.

    CAS  PubMed  Google Scholar 

  13. Boca SC, Potara M, Gabudean AM, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311(2):131–40.

    CAS  PubMed  Google Scholar 

  14. Chandrasekaran R, Gnanasekar S, Seetharaman P, Keppanan R, Arockiaswamy W, Sivaperumal S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J Mol Liq. 2016;219:232–8.

    CAS  Google Scholar 

  15. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1–2.

    CAS  PubMed  Google Scholar 

  16. Chokkalingam M, Singh P, Huo Y, Soshnikova V, Ahn S, Kang J, et al. Facile synthesis of Au and Ag nanoparticles using fruit extract of Lycium chinense and their anticancer activity. J Drug Deliv Sci Technol. 2019;49:308–15.

    CAS  Google Scholar 

  17. Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda-Bukhsh AR. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloid Surf B. 2013;101:325–36.

    CAS  Google Scholar 

  18. de Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol. 2012;32(11):867–79.

    CAS  PubMed  Google Scholar 

  19. de Souza TA, Souza LR, Franchi LP. Silver nanoparticles: an integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol Environ Saf. 2019;171:691–700.

    Google Scholar 

  20. Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloid Surf B. 2012;98:112–9.

    CAS  Google Scholar 

  21. Elangovan K, Elumalai D, Anupriya S, Shenbhagaraman R, Kaleena PK, Murugesan K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J Photochem Photobiol. 2015;151:118–24.

    CAS  Google Scholar 

  22. Fahimirad S, Ajalloueian F, Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf. 2019;168:260–78.

    CAS  PubMed  Google Scholar 

  23. Farah MA, Ali MA, Chen SM, Li Y, Al-Hemaid FM, Abou-Tarboush FM, et al. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloid Surf B. 2016;141:158–69.

    Google Scholar 

  24. Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85(7):743–50.

    CAS  PubMed  Google Scholar 

  25. Francis S, Joseph S, Koshy EP, Mathew B. Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif Cells Nanomed Biotechnol. 2018;46(4):795–804.

    CAS  PubMed  Google Scholar 

  26. Gharpure S, Kirtiwar S, Palwe S, Akash A, Ankamwar B. Non-antibacterial as well as non-anticancer activity of flower extract and its biogenous silver nanoparticles. Nanotechnology. 2019;30(19):195701.

    CAS  PubMed  Google Scholar 

  27. Giridharan T, Masi C, Sindhu S, Arumugam P. Studies on green synthesis, characterization and anti-proliferative potential of silver nano particle using Dodonaea viscosa and Capparis decidua. Biosci Biotechnol Res Asia. 2014;11(2):665–73.

    Google Scholar 

  28. Hajebi S, Tabrizi MH, Moghaddam MN, Shahraki F, Yadamani S. Rapeseed flower pollen bio-green synthesized silver nanoparticles: a promising antioxidant, anticancer and antiangiogenic compound. J Biol Inorg Chem. 2019;24:395–404.

    CAS  PubMed  Google Scholar 

  29. Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987;1(5):358–64.

    CAS  PubMed  Google Scholar 

  30. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, et al. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. peel extract. Nanoscale Res Lett. 2016;11(1):300.

    PubMed  PubMed Central  Google Scholar 

  31. Hedberg J, Skoglund S, Karlsson ME, Wold S, Odnevall Wallinder I, Hedberg Y. Sequential studies of silver released from silver nanoparticles in aqueous media simulating sweat, laundry detergent solutions and surface water. Environ Sci Technol. 2014;48(13):7314–22.

    CAS  PubMed  Google Scholar 

  32. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008;179(3):130–9.

    CAS  PubMed  Google Scholar 

  33. Huang F, Long Y, Liang Q, Purushotham B, Swamy MK, Duan Y. Safed Musli (Chlorophytum borivilianum L.) callus-mediated biosynthesis of silver nanoparticles and evaluation of their antimicrobial activity and cytotoxicity against human colon cancer cells. J Nanomater. 2019;2019:1–8.

    CAS  Google Scholar 

  34. Ishikawa K, Ishii H, Saito T. DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol. 2006;25(7):406–11.

    CAS  PubMed  Google Scholar 

  35. Ivask A, Voelcker NH, Seabrook SA, Hor M, Kirby JK, Fenech M, et al. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem Res Toxicol. 2015;28(5):1023–35.

    CAS  PubMed  Google Scholar 

  36. Jeyaraj M, Rajesh M, Arun R, MubarakAli D, Sathishkumar G, Sivanandhan G, et al. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloid Surf B. 2013;102:708–17.

    CAS  Google Scholar 

  37. Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, et al. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloid Surf B. 2013;106:86–92.

    CAS  Google Scholar 

  38. Kahsay MH, RamaDevi D, Kumar YP, Mohan BS, Tadesse A, Battu G, et al. Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-Nitrophenol, antimicrobial and anticancer activities. OpenNano. 2018;3:28–37.

    Google Scholar 

  39. Kajani AA, Bordbar AK, Esfahani SH, Khosropour AR, Razmjou A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 2014;4(106):61394–403.

    CAS  Google Scholar 

  40. Kanipandian N, Thirumurugan R. A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind Crops Prod. 2014;55:1.

    CAS  Google Scholar 

  41. Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol. 2013;33(2):78–89.

    PubMed  Google Scholar 

  42. Krishnaraj C, Harper SL, Yun SI. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). J Hazard Mater. 2016;301:480–91.

    CAS  PubMed  Google Scholar 

  43. Kumar RS, Kumar SV, Lathiff MA, Muthuboopathi G. Synthesis and characterization of bioinspired silver nanoparticles by aqueous leaf extract of Indigofera cassioides: evaluation of antimicrobial and cytotoxic activity. J Nanosci Nanotechnol. 2019;5:676–81.

    Google Scholar 

  44. Lakshmanan G, Sathiyaseelan A, Kalaichelvan PT, Murugesan K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala Int J Modern Sci. 2018;4(1):61–8.

    Google Scholar 

  45. Latha D, Prabu P, Gnanamoorthy G, Sampurnam S, Manikandan R, Arulvasu C, et al. Facile Justicia adhatoda leaf extract derived route to silver nanoparticle: synthesis, characterization and its application in photocatalytic and anticancer activity. Mater Res Express. 2019;6(4):045003.

    Google Scholar 

  46. Majeed S, Bakhtiar NF, Danish M, Ibrahim MM, Hashim R. Green approach for the biosynthesis of silver nanoparticles and its antibacterial and antitumor effect against osteoblast MG-63 and breast MCF-7 cancer cell lines. Sustain Chem Pharm. 2019;12:100138.

    Google Scholar 

  47. Manikandan R, Anjali R, Beulaja M, Prabhu NM, Koodalingam A, Saiprasad G, et al. Synthesis, characterization, anti-proliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelliformis. Process Biochem. 2019;79:135–41.

    CAS  Google Scholar 

  48. Manikandan R, Manikandan B, Raman T, Arunagirinathan K, Prabhu NM, Basu MJ, et al. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim Acta A. 2015;138:120–9.

    CAS  Google Scholar 

  49. Mittal AK, Bhaumik J, Kumar S, Banerjee UC. Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci. 2014;415:39–47.

    CAS  PubMed  Google Scholar 

  50. Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 2006;32(8):967–76.

    CAS  PubMed  Google Scholar 

  51. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4(3):316.

    PubMed  PubMed Central  Google Scholar 

  52. Nakkala JR, Mata R, Sadras SR. Green synthesized nano silver: synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J Colloid Interface Sci. 2017;499:33–45.

    CAS  PubMed  Google Scholar 

  53. Nathan C, Ding A. SnapShot: reactive oxygen intermediates (ROI). Cell. 2010;140(6):951.

    PubMed  Google Scholar 

  54. Nayak D, Pradhan S, Ashe S, Rauta PR, Nayak B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J Colloid Interface Sci. 2015;457:329–38.

    CAS  PubMed  Google Scholar 

  55. Nindawat S, Agrawal V. Fabrication of silver nanoparticles using Arnebia hispidissima (Lehm.) A. DC. root extract and unravelling their potential biomedical applications. Artif Cells Nanomed Biotechnol. 2019;47(1):166–80.

    CAS  PubMed  Google Scholar 

  56. Odeyemi SW, Afolayan AJ. Characterization and cytotoxicity evaluation of biologically synthesized silver nanoparticles from albuca setosa aqueous bulb extract. Int J Nanosci. 2019;18(2):1850023–9.

    CAS  Google Scholar 

  57. Odeyemi SW, De La Mare J, Edkins AL, Afolayan AJ. In vitro and in vivo toxicity assessment of biologically synthesized silver nanoparticles from Elaeodendron croceum. J Complement Integr Med. 2019;1–14.

  58. Palanisamy S, Rajasekar P, Vijayaprasath G, Ravi G, Manikandan R, Prabhu NM. A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: an in vitro analysis. Mater Lett. 2017;189:196–200.

    CAS  Google Scholar 

  59. Park K, Park EJ, Chun IK, Choi K, Lee SH, Yoon J, et al. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res. 2011;34(1):153–8.

    CAS  PubMed  Google Scholar 

  60. Patlolla AK, Hackett D, Tchounwou PB. Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem. 2015;399(1–2):257–68.

    CAS  PubMed  Google Scholar 

  61. Pattanayak S, Mollick MM, Maity D, Chakraborty S, Dash SK, Chattopadhyay S, et al. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: characterization and biomedical applications. J Saudi Chem Soc. 2017;21(6):673–84.

    CAS  Google Scholar 

  62. Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013;48(2):317–24.

    CAS  Google Scholar 

  63. Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA. Toxicity of silver nanoparticles in macrophages. Small. 2013;9(15):2576–84.

    CAS  PubMed  Google Scholar 

  64. Qian Y, Zhang J, Hu Q, Xu M, Chen Y, Hu G, et al. Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status. Biomaterials. 2015;70:12–22.

    CAS  PubMed  Google Scholar 

  65. Qing S, Shoutian Q, Hongyan G, Ming Y, Swamy MK, Sinniah UR, et al. Biosynthesis, characterization and biological activities of silver nanoparticles from Pogostemon cablin Benth. Methanolic leaf extract. J Nanosci Nanotechnol. 2019;19(7):4109–15.

    CAS  PubMed  Google Scholar 

  66. Reddy NJ, Vali DN, Rani M, Rani SS. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng C. 2014;34:115–22.

    CAS  Google Scholar 

  67. Remya RR, Rajasree SR, Aranganathan L, Suman TY. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol Rep. 2015;8:110–5.

    CAS  Google Scholar 

  68. Rodríguez-León E, Íñiguez-Palomares RA, Navarro RE, Rodríguez-Beas C, Larios-Rodríguez E, Alvarez-Cirerol FJ, et al. Silver nanoparticles synthesized with Rumex hymenosepalus extracts: effective broad-spectrum microbicidal agents and cytotoxicity study. Artif Cells Nanomed Biotechnol. 2018;46(6):1194–206.

    PubMed  Google Scholar 

  69. Salaheldin TA, El-Chaghaby GA, El-Sherbiny MA. Green synthesis of silver nanoparticles using Portulacaria afra plant extract: characterization and evaluation of its antibacterial, anticancer activities. Novel Res Microbiol J. 2019;3(1):215–22.

    Google Scholar 

  70. Sathishkumar P, Preethi J, Vijayan R, Yusoff AR, Ameen F, Suresh S, et al. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J Photochem Photobiol B. 2016;163:69–76.

    CAS  PubMed  Google Scholar 

  71. Seabra AB, Durán N. Nitric oxide-releasing vehicles for biomedical applications. J Mater Chem. 2010;20(9):1624–37.

    CAS  Google Scholar 

  72. Selvam P, Vijayakumar T, Wadhwani A, Muthulakshmi L. Bioreduction of silver nanoparticles from aerial parts of Euphorbia hirta L. (EH-ET) and its potent anticancer activities against neuroblastoma cell lines. Indian J Biochem Biophys. 2019;56:132–6.

    CAS  Google Scholar 

  73. Selvi Barnabas CG, Theerthagiri J, Santhanam A. Comparative photocatalytic degradation of organic dyes using silver nanoparticles synthesized from Padina tetrastromatica. Curr Nanosci. 2018;14(1):71–5.

    CAS  Google Scholar 

  74. Shah A, Lutfullah G, Ahmad K, Khalil AT, Maaza M. Daphne mucronata-mediated phytosynthesis of silver nanoparticles and their novel biological applications, compatibility and toxicity studies. Green Chem Lett Rev. 2018;11(3):318–33.

    CAS  Google Scholar 

  75. Shaniba VS, Aziz AA, Jayasree PR, Kumar PM. Manilkara zapota (L.) P. Royen leaf extract derived silver nanoparticles induce apoptosis in human colorectal carcinoma cells without affecting human lymphocytes or erythrocytes. Biol Trace Elem Res. 2019;1–5.

  76. Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991;91(3):31–8.

    Google Scholar 

  77. Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ. 2014;468:968–76.

    PubMed  Google Scholar 

  78. Singh H, Du J, Yi TH. Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Artif Cells Nanomed Biotechnol. 2017;45(7):1310–6.

    CAS  PubMed  Google Scholar 

  79. Sonia K, Kukreti S, Kaushik M. Exploring the potential of environment friendly silver nanoparticles for DNA interaction: physicochemical approach. J Photochem Photobiol. 2019;194:158–65.

    Google Scholar 

  80. Sriranjani R, Srinithya B, Vellingiri V, Brindha P, Anthony SP, Sivasubramanian A, et al. Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J Mol Liq. 2016;220:926–30.

    CAS  Google Scholar 

  81. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol. 2009;9(8):4924–32.

    CAS  PubMed  Google Scholar 

  82. Vinmathi V, Jacob SJ. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy. Bull Mater Sci. 2015;38(3):625–8.

    CAS  Google Scholar 

  83. Xia Q, Ma Y, Wang J. Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials. 2016;6(9):160.

    PubMed Central  Google Scholar 

  84. Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials. 2002;23(7):1553–61.

    CAS  PubMed  Google Scholar 

  85. Zhang R, Piao MJ, Kim KC, Kim AD, Choi JY, Choi J, et al. Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int J Biochem Cell Biol. 2012;44(1):224–32.

    CAS  PubMed  Google Scholar 

  86. Zhornik EV, Baranova LA, Drozd ES, Sudas MS, Chau NH, Buu NQ, et al. Silver nanoparticles induce lipid peroxidation and morphological changes in human lymphocytes surface. Biophysics. 2014;59(3):380–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansuman Chattopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey Bhowmik, A., Bandyopadhyay, A. & Chattopadhyay, A. Cytotoxic and mutagenic effects of green silver nanoparticles in cancer and normal cells: a brief review. Nucleus 62, 277–285 (2019). https://doi.org/10.1007/s13237-019-00293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00293-0

Keywords

Navigation