Skip to main content
Log in

Chromosome research in orchids: current status and future prospects with special emphasis from molecular and epigenetic perspective

  • Review
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Having more than 25,000 species belonging to >800 genera, orchids are renowned for the abundance of morphotypes, with apparently everlasting compilation of extraordinary and fantastic adaptations, and represent a highly advanced terminal line of floral evolution in the angiosperms. The pattern of speciation and evolution in the family Orchidaceae is still elusive due to lack of information on valuable chromosome landmarks including centromeres, telomeres, nucleolar organizing regions (NORs), accessory chromosomes, structural rearrangements, eu/hetero-chromatin structure that ultimately resulted in complex genome organization. Therefore, an attempt has been made to catalog the available information on chromosome research in orchids encompassing the wide spectrum of conventional/molecular cytogenetics. Further, the recent developments in the broad scope of epi-cytogenetics involving nuclear architecture, spatial-temporal chromosomal distribution of DNA/histone modification marks, and their interplay in the formation of chromatin environment during cell division have been discussed. The application of flow-cytogenetics in unrevealing the complex genome architecture and ploidy of orchids has also been considered significantly. Further, in view of recent availability of the transcriptome and genome sequences of orchids, the potential of next-generation cytogenetics in discovery of myriad cytogenetic milestones for uncovering the mysteries of orchid’s genome and concurrent evolution has also been addressed. In particular, this review ultimately provides a broad scope and perspectives in different aspects of chromosome research on the highly evolved yet complex orchid family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aoyama M. Karyomorphological studies in Cymbidium and its allied genera, Orchidaceae. Bull Hiroshima Bot Gard. 1989;11:1–121.

    Google Scholar 

  2. Arditti J. Fundamentals of orchid biology. New York: Wiley; 1992.

    Google Scholar 

  3. Begum R, Alam SS, Menzel G, Schmid T. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh. Ann Bot. 2009;104:863–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bolaños-Villegas P, Chin SW, Chen FC. Meiotic chromosome behavior and capsule setting in Doritaenopsis hybrids. J Am Soc Hort Sci. 2008;133:107–16.

    Google Scholar 

  5. Brown RC. Lemmon BE Pollen development in orchids.3. A novel generative pole microtubule system predicts unequal pollen mitosis. J Cell Sci. 1991;99:273–81.

    Google Scholar 

  6. Brown RC. Lemmon BE Pollen development in orchids.4. Cytoskeleton and ultrastructure of the unequal pollen mitosis in Phalaenopsis. Protoplasma. 1992;167:183–92.

    Article  Google Scholar 

  7. Brown RC, Lemmon BE. Pollen mitosis in the slipper orchid Cypripedium fasciculatum. Sex Plant Reprod. 1994;7:87–94.

    Article  Google Scholar 

  8. Cabral JS, Felix LP, Guerra M. Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol. 2006;29:659–64.

    Article  Google Scholar 

  9. Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, et al. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet. 2015;47:65–72.

    Article  CAS  PubMed  Google Scholar 

  10. Cox AV, Abdelnour DG, Bennett MD, Leitch IJ. Genome size and karyotype evolution in the slipper orchids (Cypripedioideae: Orchidaceae). Am J Bot. 1998;85:681–87.

    Article  CAS  PubMed  Google Scholar 

  11. D’emerico S, Galasso I, Pignone D, Scrugli A. Localization of rDNA loci by fluorescent in situ hybridization in some wild orchids from Italy (Orchidaceae). Caryologia. 2001;54:31–6.

    Article  Google Scholar 

  12. Daviña JR, Grabiele M, Cerutti JC, Hojsgaard DH, Almada RD, Insaurralde IS, et al. Chromosome studies in Orchidaceae from Argentina. Genet Mol Biol. 2009;32:811–21.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dressler RL. Phylogeny and classification of the orchid family. Portland: Dioscorides; 1993.

    Google Scholar 

  14. Ehrendorfer F. Polyploidy and distribution. In: Lewis WH, editor. Polyploidy: Biological relevance. New York: Plenum Press; 1980. p. 45–60.

    Chapter  Google Scholar 

  15. Felix LP, Guerra M. Basic chromosome numbers of terrestrial orchids. Plant Syst Evol. 2005;254:131–48.

    Article  CAS  Google Scholar 

  16. Felix LP. GuerraM. Cytogenetics and cytotaxonomy of some Brazilian species of Cymbidioid orchids. Genet Mol Biol. 2000;23:957–78.

    Article  Google Scholar 

  17. Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, et al. OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol. 2011;52:238–43.

    Article  CAS  PubMed  Google Scholar 

  18. Goldblatt P. Polyploidy in angiosperms: monocotyledons. In: Lewis WH, editor. Polyploidy: biological relevance. New York: Plenum Press; 1980. p. 219–32.

    Chapter  Google Scholar 

  19. Griesbach RJ. Polyploidy in Phalaenopsis orchid improvement. J Hered. 1985;76:74–5.

    Google Scholar 

  20. Heslop-Harrison JS. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell. 2000;12:617–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, et al. Research on orchid biology and biotechnology. Plant Cell Physiol. 2011;52:1467–86.

    Article  CAS  PubMed  Google Scholar 

  22. Hsu SC, Cheng TC, Bolaños-Villegas P, Chin SW, Chen FC. Pollen Meiotic Behavior in Relation to Phalaenopsis Breeding. In: Blanchard MG. editor. Proc Ist Intl Orchid Symposium Acta Hort. 2010. p. 878.

  23. Hsu CC, Chung YC, Chen TC, Lee YL, Kuo YT, Tsai WC, et al. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol. 2011;11:3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jones K. Cytology and the study of orchids. In: Withner CL, editor. The orchids: scientific studies. New York: Wiley; 1974. p. 383–89.

    Google Scholar 

  25. Jones RN, Vij SP. B chromosomes in orchids. J Orchid Soc India. 1988;2:77–85.

    Google Scholar 

  26. Jones WE, Kuehnle AR. Ploidy identification using flow cytometry in tissues of Dendrobium species and cultivars. Lindleyana. 1998;13:11–8.

    Google Scholar 

  27. Kao YY, Chang SB, Lin TY, Hsiehs CH, Chen YH, ChenWHand Chen CC. Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann Bot. 2001;87:387–95.

    Article  CAS  Google Scholar 

  28. Lan T, Albert VA. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol. 2011;11:126.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lee HC, Chiou DW, Chen WH. Dynamics of cell growth and endoreduplication during orchid flower development. Plant Sci. 2004;166:659–67.

    Article  CAS  Google Scholar 

  30. Lee YH. Cytology and fertility of an intergeneric orchid hybrid. J Hered. 1987;78:319–22.

    Google Scholar 

  31. Lee YI, Chung MC. Identification of genome relationships among Paphiopedilum species by genomic and fluorescent in situ hybridization. Acta Hortic. 2008;766:331–34.

    Article  Google Scholar 

  32. Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, et al. Genome size diversity in orchids: consequences and evolution. Ann Bot. 2009;104:469–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lim WL, Loh CS. Endopolyploidy in Vanda Miss Joaquim (Orchidaceae). New Phytol. 2003;159:279–87.

    Article  CAS  Google Scholar 

  34. Lin CC, Chen YH, Chen WH, Chen CC, Kao YY. Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Bot Bull Acad Sin. 2005;46:339–45.

    CAS  Google Scholar 

  35. Lin S, Lee HC, Chen WH, Chen CC, Kao YY, Fu YM, et al. Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. J Am Soc Hortic Sci. 2001;126:195–99.

    CAS  Google Scholar 

  36. Matsuba A, Fujii M, Lee SS, Suzuki G, Yamamoto M, Mukai Y. Molecular cytogenetic use of BAC clones of Neofinetia falcate and Rhynchostylis coelestis Nucleus. doi:10.1007/s13237-015-0147-y.

  37. Moscone EA, Samuel R, Schwarzacher T, Schweizer D, Pedrosa-Harand A. Complex rearrangements are involved in Cephalanthera (Orchidaceae) chromosome evolution. Chromosome Res. 2007;15:931–43.

    Article  CAS  PubMed  Google Scholar 

  38. Nagl W. Heterochromatin elimination in the orchid Dendrobium. Protoplasma. 1983;118:234–37.

    Article  Google Scholar 

  39. Nagl W. Localization of amplified DNA in nuclei of the orchid Cymbidium by in situ hybridization. Experientia. 1977;33:1040–41.

    Article  CAS  Google Scholar 

  40. Okada H. Karyomorphological observations of Apostasia nuda and Neuwiedia veratrifolia (Apostasiaceae, Orchidaceae). J Jpn Bot. 1988;63:344–50.

    Google Scholar 

  41. Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, et al. The duplicated B-class MADS-Box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol. 2011;52:1515–31.

    Article  CAS  PubMed  Google Scholar 

  42. Raven PH. The bases of angiosperm phylogeny: cytology. Ann Mo Bot Gard. 1975;62:724–64.

    Article  Google Scholar 

  43. Roy SC, Sharma AK. Cytological studies of Indian orchids. Proc Ind Natl Sci Acad. 1972;38:72–86.

    Google Scholar 

  44. Sharma AK, Chetterji AK. The chromosome numbers of few more orchid genera. Curr Sci. 1966;30:75.

    Google Scholar 

  45. Sharma SK, Rajkumari K, Kumaria S, Tandon P, Rao SR. Karyo-morphological characterization of natural genetic variation in some threatened Cymbidium species of Northeast India. Caryologia. 2010;63:99–105.

    Article  Google Scholar 

  46. Sharma SK, Kumaria S, Tandon P, Rao SR. Comparative karyomorphological study of some Indian Cymbidium Swartz, 1799 (Cymbidieae, Orchidaceae). Comp Cytogenet. 2012;6:453–65.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sharma SK, Kumaria S, Tandon P, Rao SR. Endomitosis in tapetal cells of some cymbidiums (Orchidaceae). Nucleus. 2012;55:21–5.

    Article  Google Scholar 

  48. Sharma SK, Mehra P, Kumari J, Kumar S, Kumaria S, Tandon P, et al. Physical localization and probable transcriptional activity of 18S-5.8S-26S rRNA gene loci in some Asiatic cymbidiums (Orchidaceae) from north-east India. Gene. 2012;499:362–66.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma SK, Dhar J, Kumaria S, Tandon P, Rao SR. Assessment of phylogenetic inter-relationships in the genus Cymbidium (Orchidaceae) based on internal transcribed spacer region of rDNA. Gene. 2012;495:10–5.

    Article  CAS  PubMed  Google Scholar 

  50. Sharma SK, Kumaria S, Tandon P, Rao SR. Single Primer Amplification Reaction (SPAR) methods reveal the intra-specific natural genetic variation in five species of Cymbidium (Orchidaceae). Gene. 2011;483:54–62.

    Article  CAS  PubMed  Google Scholar 

  51. Sharma SK, Kumaria S, Tandon P, Rao SR. Assessment of genetic variation and identification of species-specific ISSR markers in five species of Cymbidium (Orchidaceae). J Plant Biochem Biotechnol. 2013;22:250–55.

    Article  CAS  Google Scholar 

  52. Sharma SK, Yamamoto M, Mukai Y. Immuno-cytogenetic manifestation of epigenetic chromatin modification marks in plants. Planta. 2015;241:291–301.

    Article  CAS  PubMed  Google Scholar 

  53. Shekhar N. Cytotaxonomic studies in some Indian Orchids (Ph.D thesis). Chandigarh: Punjab University; 1984.

  54. Stace CA. Cytology and cytogenetics as a fundamental taxonomic resource for the twenty and twenty first centuries. Taxon. 2000;49:451–77.

    Article  Google Scholar 

  55. Stebbins GL. Chromosomal evolution in higher plants. London: Edward Arnold; 1971.

    Google Scholar 

  56. Szlachetko D. Sistema orchidalium. Frag Flor Geob. 1995;3(Suppl):1–152.

    Google Scholar 

  57. Teoh SB, Ong EC. Differential meiotic behaviour in hybrid clones of Aranda. Euphytica. 1983;32:799–806.

    Article  Google Scholar 

  58. Teoh SB. Polyploid spore formation in diploid orchid species. Genetica. 1984;63:53–9.

    Article  Google Scholar 

  59. Than MMM, Pal A, Jha S. Chromosome number and modal karyotype in a polysomatic endangered orchid, Bulbophyllum auricomum Lindl., the Royal Flower of Myanmar. Plant Syst Evol. 2011;294:167–75.

    Article  Google Scholar 

  60. Tsai WC, Fu CH, Hsiao YY, Huang YM, Chen LJ, Wang M, et al. OrchidBase 2.0: comprehensive collection of orchidaceae floral transcriptomes. Plant Cell Physiol. 2013;54:e7.

    Article  CAS  PubMed  Google Scholar 

  61. Vij SP, Mehra PN. Cytological studies in East Himalayan Orchidaceae III: Cypripedieae. Caryologia. 1974;27:293–300.

    Article  Google Scholar 

  62. Vij SP, Mehra PN. Cytological studies in the East Himalayan Orchidaceae 4: Epidendreae. Res Bull (Sci) Panjab Univ. 1976;27:51–98.

    Google Scholar 

  63. Vij SP, Shekhar N. Cytogenetical aspects of Indian orchids. In: Vij SP, editor. Biology, conservation, and culture of orchids. New Delhi: Affiliated East-West Press Pvt. Ltd.; 1986. p. 189–220.

    Google Scholar 

  64. Yang M, Loh CS. Systematic endopolyploidy in Spathoglottis plicata (Orchidaceae) development. BMC Cell Biol. 2004;5:33–9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Japan Society for the Promotion of Science (JSPS), Japan for providing post-doctoral fellowship (SKS, no. P13399) and Grants-in-Aid for Scientific Research (C) (YM, no. 25450006) in the field of orchid cytogenetics. Sincere thanks are also due to Prof. Maki Yamamoto, Kansai University of Welfare Sciences, Osaka, and Prof. Go Suzuki and all members of Plant Molecular Genetics Laboratory, Osaka Kyoiku University, Osaka, Japan for their constant encouragement and help. We also thank Osaka Kyoiku University, Osaka, Japan for providing the facilities. Sincere apologies to those authors whose work(s) we could not cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Sharma.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest. SKS and YM designed the theme of the study. SKS did the experiments and wrote the manuscript. YM provided valuable inputs for significant improvement of the quality of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Mukai, Y. Chromosome research in orchids: current status and future prospects with special emphasis from molecular and epigenetic perspective. Nucleus 58, 173–184 (2015). https://doi.org/10.1007/s13237-015-0152-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-015-0152-1

Keywords

Navigation