Skip to main content
Log in

Evolutionary Game Dynamics in a Finite Continental Island Population Model and Emergence of Cooperation

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

We consider the continental island model for a finite haploid population with a total number of \({\textit{n}}\) demes consisting of one continent and \(n-1\) islands. We assume viability differences in the population captured by a linear game within each deme as a result of pairwise interactions. Assuming weak selection, conservative migration and the limit case of the structured coalescent assumptions, we derive the first-order approximation for the fixation probability of a single mutant, initially introduced in the continent, with respect to the intensity of selection. This result is applied to the case of the iterated Prisoner’s Dilemma, when the resident strategy is always defect and the mutant cooperative strategy is tit-for-tat. In this context, we investigate the condition under which selection favors the emergence of cooperation and we derive an extension of the “one-third law” of evolution. When the continent and the islands are of the same size, we compare the continental island model to its Wright’s island model counterpart. When the islands have the same size, but this size differs from the size of the continent, we investigate how the asymmetry in the deme sizes can better promote the evolution of tit-for-tat compared to its equal deme sizes model counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Allen B, McAvoy A (2019) A mathematical formalism for natural selection with arbitrary spatial and genetic structure. J Math Biol 78(4):1147–1210. https://doi.org/10.1007/s00285-018-1305-z

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen B, Nowak M (2014) Games on graphs. EMS Surv Math Sci. https://doi.org/10.4171/emss/3

  3. Allen B, Tarnita CE (2014) Measures of success in a class of evolutionary models with fixed population size and structure. J Math Biol 68(1):109–143. https://doi.org/10.1007/s00285-012-0622-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Allen B, Lippner G, Chen YT et al (2017) Evolutionary dynamics on any population structure. Nature 544(7649):227–230. https://doi.org/10.1038/nature21723

    Article  Google Scholar 

  5. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211(4489):1390–1396. https://doi.org/10.1126/science.7466396

    Article  MathSciNet  MATH  Google Scholar 

  6. Cannings C (1974) The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models. Adv Appl Probab 6(2):260–290. https://doi.org/10.2307/1426293

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen YT (2013) Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann Appl Probab 23(2):637–664. https://doi.org/10.1214/12-aap849

    Article  MathSciNet  MATH  Google Scholar 

  8. Gokhale CS, Traulsen A (2010) Evolutionary games in the multiverse. Proc Natl Acad Sci 107(12):5500–5504. https://doi.org/10.1073/pnas.0912214107

    Article  MathSciNet  Google Scholar 

  9. Herbots HM (1994) Stochastic models in population genetics: genealogy and genetic differentiation in structured populations. PhD thesis, University of London

  10. Herbots HM (1997) The structured coalescent. In: Donnelly P, Tavaré S (eds) Progress in population genetics and human evolution. Springer

  11. Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems: mathematical aspects of selection. Cambridge University Press

  12. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press. https://doi.org/10.1017/CBO9781139173179

  13. Imhof AL, Nowak AM (2006) Evolutionary game dynamics in a Wright–Fisher process. J Math Biol 52(5):667–681. https://doi.org/10.1007/s00285-005-0369-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Karlin S, Taylor HM (1975) A first course in stochastic processes, 2nd edn. Academic Press

  15. Kingman JFC (1982) The coalescent. Stoch Process Appl 13(3):235–248. https://doi.org/10.1016/0304-4149(82)90011-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Kroumi D, Lessard S (2015a) Conditions for cooperation to be more abundant than defection in a hierarchically structured population. Dyn Games Appl 5(2):239–262. https://doi.org/10.1007/s13235-014-0114-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Kroumi D, Lessard S (2015b) Strong migration limit for games in structured populations: Applications to dominance hierarchy and set structure. Games 6:318–346. https://doi.org/10.3390/g6030318

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurokawa S, Ihara Y (2009) Emergence of cooperation in public goods games. Proc R Soc Lond B: Biol Sci 276(1660):1379–1384. https://doi.org/10.1098/rspb.2008.1546

  19. Ladret V, Lessard S (2007) Fixation probability for a beneficial allele and a mutant strategy in a linear game under weak selection in a finite island model. Theor Popul Biol 72(3):409–425. https://doi.org/10.1016/j.tpb.2007.04.001

    Article  MATH  Google Scholar 

  20. Ladret V, Lessard S (2008) Evolutionary game dynamics in a finite asymmetric two-deme population and emergence of cooperation. J Theor Biol 255(1):137–151. https://doi.org/10.1016/j.jtbi.2008.07.025

    Article  MathSciNet  MATH  Google Scholar 

  21. Lessard S (2005) Long-term stability from fixation probabilities in finite populations: new perspectives for ESS theory. Theor Popul Biol 68(1):19–27. https://doi.org/10.1016/j.tpb.2005.04.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Lessard S (2007) Cooperation is less likely to evolve in a finite population with a highly skewed distribution of family size. Proc R Soc Lond B: Biol Sci 274(1620):1861–1865. https://doi.org/10.1098/rspb.2007.0366

    Article  Google Scholar 

  23. Lessard S (2011a) Effective game matrix and inclusive payoff in group-structured populations. Dyn Games Appl 1(2):301. https://doi.org/10.1007/s13235-011-0014-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Lessard S (2011b) Evolution of cooperation in finite populations. In: Proc. sympos. appl. math., vol 69. American Mathematical Society, Providence, pp 143–171

  25. Lessard S (2011c) On the robustness of the extension of the one-third law of evolution to the multi-player game. Dyn Games Appl 1(3):408–418. https://doi.org/10.1007/s13235-011-0010-y

    Article  MathSciNet  MATH  Google Scholar 

  26. Lessard S, Ladret V (2007) The probability of fixation of a single mutant in an exchangeable selection model. J Math Biol 54(5):721–744. https://doi.org/10.1007/s00285-007-0069-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Li A, Wu B, Wang L (2014) Cooperation with both synergistic and local interactions can be worse than each alone. Sci Rep 4(1):5536. https://doi.org/10.1038/srep05536

    Article  Google Scholar 

  28. Li A, Broom M, Du J et al (2016) Evolutionary dynamics of general group interactions in structured populations. Phys Rev E 93(2):022407. https://doi.org/10.1103/PhysRevE.93.022407

  29. Maynard Smith J (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47(1):209–221. https://doi.org/10.1016/0022-5193(74)90110-6

    Article  MathSciNet  Google Scholar 

  30. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press. https://doi.org/10.1017/CBO9780511806292

  31. Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18. https://doi.org/10.1038/246015a0

    Article  MATH  Google Scholar 

  32. McAvoy A, Allen B (2021) Fixation probabilities in evolutionary dynamics under weak selection. J Math Biol. https://doi.org/10.1007/s00285-021-01568-4

  33. Notohara M (1990) The coalescent and the genealogical process in geographically structured population. J Math Biol 29(1):59–75. https://doi.org/10.1007/BF00173909

    Article  MathSciNet  MATH  Google Scholar 

  34. Nowak M (2006a) Evolutionary dynamics. Harvard University Press

  35. Nowak M, Tarnita C, Antal T (2010) Evolutionary dynamics in structured populations. Philos Trans R Soc Lond B Biol Sci 365:19–30. https://doi.org/10.1098/rstb.2009.0215

    Article  Google Scholar 

  36. Nowak MA (2006b) Five rules for the evolution of cooperation. Science 314(5805):1560–1563. https://doi.org/10.1126/science.1133755

    Article  Google Scholar 

  37. Nowak MA, Sigmund K (2004) Evolutionary dynamics of biological games. Science 303(5659):793–799. https://doi.org/10.1126/science.1093411

    Article  Google Scholar 

  38. Nowak MA, Sasaki A, Taylor C et al (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428(6983):646–650. https://doi.org/10.1038/nature02414

    Article  Google Scholar 

  39. Ohtsuki H, Nowak MA (2006) Evolutionary games on cycles. Proc R Soc Lond B: Biol Sci 273(1598):2249–2256. https://doi.org/10.1098/rspb.2006.3576

  40. Ohtsuki H, Hauert C, Lieberman E et al (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441(7092):502–505. https://doi.org/10.1038/nature04605

    Article  Google Scholar 

  41. Ohtsuki H, Pacheco JM, Nowak MA (2007) Evolutionary graph theory: breaking the symmetry between interaction and replacement. J Theor Biol 246(4):681–694. https://doi.org/10.1016/j.jtbi.2007.01.024

    Article  MathSciNet  MATH  Google Scholar 

  42. Rousset Billiard (2000) A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. J Evol Biol 13(5):814–825. https://doi.org/10.1046/j.1420-9101.2000.00219.x

    Article  Google Scholar 

  43. Rousset F (2003) A minimal derivation of convergence stability measures. J Theor Biol 221(4):665–668. https://doi.org/10.1006/jtbi.2003.3210

    Article  MATH  Google Scholar 

  44. Rousset F (2006) Separation of time scales, fixation probabilities and convergence to evolutionary stable states under isolation by distance. Theor Popul Biol 69:165–79. https://doi.org/10.1016/j.tpb.2005.08.008

    Article  MATH  Google Scholar 

  45. Sample C, Allen B (2017) The limits of weak selection and large population size in evolutionary game theory. J Math Biol 75(5):1285–1317. https://doi.org/10.1007/s00285-017-1119-4

    Article  MathSciNet  MATH  Google Scholar 

  46. Soares CD, Lessard S (2020) First-order effect of frequency-dependent selection on fixation probability in an age-structured population with application to a public goods game. Theor Popul Biol 133:80–96. https://doi.org/10.1016/j.tpb.2019.05.001

    Article  MATH  Google Scholar 

  47. Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446(4):97–216. https://doi.org/10.1016/j.physrep.2007.04.004

    Article  MathSciNet  Google Scholar 

  48. Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40(1):145–156. https://doi.org/10.1016/0025-5564(78)90077-9

    Article  MathSciNet  MATH  Google Scholar 

  49. Traulsen A, Pacheco JM, Imhof LA (2006) Stochasticity and evolutionary stability. Phys Rev Lett E 3:74(2):021,905. https://doi.org/10.1103/PhysRevE.74.021905

    Article  Google Scholar 

  50. Trivers RL (1971) The evolution of reciprocal altruism. Q Rev Biol 46(1):35–57. https://doi.org/10.1086/406755

    Article  Google Scholar 

  51. van Veelen M, Nowak MA (2012) Multi-player games on the cycle. J Theor Biol 292:116–128. https://doi.org/10.1016/j.jtbi.2011.08.031

    Article  MathSciNet  MATH  Google Scholar 

  52. Wilkinson-Herbots MH (1998) Genealogy and subpopulation differentiation under various models of population structure. J Math Biol 37(6):535–585. https://doi.org/10.1007/s002850050140

    Article  MathSciNet  MATH  Google Scholar 

  53. Wright S (1931) Evolution in Mendelian populations. Genetics 16(2):97–159

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Fabien Campillo for his comments and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Ladret.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Proposition 1

Here, we prove Proposition 1. For \(t=0, 1,\ldots \), let us define Z(t), the weighted frequency of A, as:

$$\begin{aligned} Z(t)=u_0\,X_0(t)+\cdots +u_{n-1}\,X_{n-1}(t)\,, \end{aligned}$$

where \(\mathbf{u}=(u_0,\ldots ,u_{n-1})\) denotes the stationary distribution of migration matrix \(\mathbf{M}\). For any given selection intensity \(s\ge 0\), the discrete-time stochastic process \((Z(t))_{t\ge 0}\), is a Markov chain on the finite state space:

$$\begin{aligned} \biggl \{\textstyle u_0\,\frac{k_0}{N_0}+\sum _{i=1}^{n-1} u_i\,\frac{k_i}{N_1} \;;\; k_0=0,\ldots , N_0\,,\ k_i=0,\ldots , N_1\,,\ i=1,\ldots , n-1 \biggr \}\,. \end{aligned}$$

Its initial state is \(Z(0)=u_0/N_0\), and there are two absorbing states \(z=0\) and \(z=1\), which correspond to the fixation of B and A, respectively; all the other states being transient.

This process converges in probability to a random variable \(Z(\infty )\), which takes the value 1 with probability u(s), and 0 otherwise. In the neutral scenario (\(s=0\)), this process is a bounded martingale. By the stopping time theorem [14], we find that the fixation probability of A, which occurs when the absorbing state \(z=1\) is reached, is equal to:

$$\begin{aligned} u(0)={\mathbb {E}}_0(Z(\infty ))=Z(0)=\frac{u_0}{N_0}\,. \end{aligned}$$

In the general case when selection intensity is s, we can write following [43] that:

$$\begin{aligned} {\mathbb {E}}[Z(\infty )-Z(0)]=\sum _{t\ge 0}{\mathbb {E}}[Z(t+1)-Z(t)]\,, \end{aligned}$$

which is equivalent to:

$$\begin{aligned} u(s)-u(0)=\sum _{t\ge 0}{\mathbb {E}}[Z(t+1)-Z(t)]\,. \end{aligned}$$

After differentiating with respect to s and assuming the interchangeability of summation and derivation (for a formal proof under mild regularity conditions see [26]), we get:

$$\begin{aligned} u'(0) = \sum _{t\ge 0} \frac{{d }}{{{d }} s}{\mathbb {E}}[Z(t+1)-Z(t)]\Big \vert _{s=0}\,. \end{aligned}$$

Conditioning on the values \({\mathbf {x}}=(x_0, x_1,\ldots , x_{n-1})\) taken by \({\mathbf {X}}(t)\), we can write:

$$\begin{aligned} {\mathbb {E}}[Z(t+1)-Z(t)] = \sum _{{\mathbf {x}}} {\mathbb {E}}\bigl [Z(t+1)-Z(t)\big \vert {\mathbf {X}}(t)={\mathbf {x}}\bigr ]\, {\mathbb {P}}({\mathbf {X}}(t)={\mathbf {x}})\,, \end{aligned}$$

which implies that:

$$\begin{aligned}&\frac{{d }}{{d }s}{\mathbb {E}}[Z(t+1)-Z(t)]\Big \vert _{s=0}\\&\quad = \sum _{{\mathbf {x}}}\frac{{d }}{{d }s}{\mathbb {E}}\big [Z(t+1)-Z(t)\big \vert {\mathbf {X}}(t) ={\mathbf {x}}\big ]\Big \vert _{s=0} \;{\mathbb {P}}_0\big ({\mathbf {X}}(t)={\mathbf {x}}\big )\\&\qquad +\,\sum _{{\mathbf {x}}} {\mathbb {E}}_0\Big [Z(t+1)-Z(t)\Big \vert {\mathbf {X}}(t)={\mathbf {x}}\Big ] \,\frac{{d }}{{d }s}\,{\mathbb {P}}\big ({\mathbf {X}}(t)={\mathbf {x}}\big )\big \vert _{s=0} \,. \end{aligned}$$

In the neutral case (\(s=0\)), the expected change in Z(t) from one generation to the next is zero, that is:

$$\begin{aligned} {\mathbb {E}}_0\bigl [Z(t+1)-Z(t)\big \vert {\mathbf {X}}(t)={\mathbf {x}}\bigr ]=0\,. \end{aligned}$$

This leads to:

$$\begin{aligned} u'(0)= & {} \sum _{t\ge 0} \sum _{{\mathbf {x}}} {\mathbb {P}}_0\big ({\mathbf {X}}(t)=\mathbf{x}\big )\, \frac{{d }}{{d }s} {\mathbb {E}}\big [Z(t+1)-Z(t)\vert {\mathbf {X}}(t)=\mathbf{x}\big ]\Big \vert _{s=0}\,. \end{aligned}$$
(A.1)

Since the change in the weighted frequency of A from one generation to the next has conditional expectation :

$$\begin{aligned} {\mathbb {E}}\big [Z(t+1)-Z(t)\vert {\mathbf {X}}(t)=\mathbf{x}\big ] = \sum _{i=0}^{n-1}u_i\Big ({\mathbb {E}}\big [X_i(t+1)\vert {\mathbf {X}}(t)=\mathbf{x}\big ]-x_i\Big ), \end{aligned}$$

it follows from (3), (4) and (5), that:

$$\begin{aligned}&\frac{{d }}{{d }s}{\mathbb {E}}\big [Z(t+1)-Z(t)\big \vert {\mathbf {X}}(t)=\mathbf{x}\big ]\Big \vert _{s=0} \nonumber \\&\quad = \sum _{i=0}^{n-1} u_i \, {\tilde{x}}_i^2\,(1-{\tilde{x}}_i)\,({\mathbf {p}}_A-{\mathbf {p}}_B)\cdot W\,({\mathbf {p}}_A-{\mathbf {p}}_B) \nonumber \\&\qquad +\, \sum _{i=0}^{n-1}u_i\,{\tilde{x}}_i\,(1-{\tilde{x}}_i)\,({\mathbf {p}}_A-{\mathbf {p}}_B)\cdot W_i\,{\mathbf {p}}_B\,. \end{aligned}$$
(A.2)

If we plug Eqs. (1) and (2) into (A.2), it follows from (A.1) that:

$$\begin{aligned} u'(0)&= ({\mathbf {p}}_A-{\mathbf {p}}_B)\\&\quad \cdot \left\{ u_0 \sum _{t\ge 0}\lambda _0({\mathbf {m}}_0,{\mathbf {X}}(t)) + \sum _{i=1}^{n-1}u_i \sum _{t\ge 0}\lambda _i({\mathbf {m}}_1,{\mathbf {X}}(t)) \right\} W({\mathbf {p}}_A-{\mathbf {p}}_B)\\&\quad + \,({\mathbf {p}}_A-{\mathbf {p}}_B)\\&\quad \cdot \left\{ u_0 \,\sum _{t\ge 0} \delta _0({\mathbf {m}}_0,{\mathbf {X}}(t)) + \sum _{i=1}^{n-1}u_i \,\sum _{t\ge 0}\delta _i({\mathbf {m}}_1,{\mathbf {X}}(t)) \right\} \,W \, {\mathbf {p}}_B\,, \\&= ({\mathbf {p}}_A-{\mathbf {p}}_B) \cdot \kappa _{\lambda }\, W\,({\mathbf {p}}_A-{\mathbf {p}}_B) + ({\mathbf {p}}_A-{\mathbf {p}}_B) \cdot \kappa _{\delta } \, W \, {\mathbf {p}}_B\,, \end{aligned}$$

where \(\lambda _0({\mathbf {m}}_0,{\mathbf {X}}(t))\), \(\lambda _i({\mathbf {m}}_1,{\mathbf {X}}(t))\), \(\delta _0({\mathbf {m}}_0,{\mathbf {X}}(t))\), and \(\delta _i({\mathbf {m}}_1,{\mathbf {X}}(t))\) can be explicitly written in terms of coefficients \({\mathbb {E}}_0[X_i(t)X_j(t)(1-X_k(t))]\) and \({\mathbb {E}}_0[X_i(t)(1-X_j(t))]\), with \(i,j,k\in \{0,\ldots , n-1\}\). Due to the interchangeability of the islands, those expressions can be reduced to equations involving coefficients \({\mathbb {E}}_0[X_i(t)X_j(t)(1-X_k(t))]\) and \({\mathbb {E}}_0[X_i(t)(1-X_j(t))]\) only for \(i,j,k\in \{0,1,2,3\}\), as follows:

$$\begin{aligned} \lambda _0({\mathbf {m}}_0,{\mathbf {X}}(t))&= (1-m_0)^3 \, {\mathbb {E}}_0[X_0(t)^2 \, (1-X_0(t))] \nonumber \\&\quad +\, m_0 \, (1-m_0)^2 \, {\mathbb {E}}_0[X_0^2(t) \, (1-X_1(t))] \nonumber \\&\quad + \,2 \, m_0 \, (1-m_0)^2 \, {\mathbb {E}}_0[X_0(t) \, (1-X_0(t)) \, X_1(t)] \nonumber \\&\quad + \,2 \, (1-m_0) \, m_0^2 \, \frac{n-2}{n-1} \, {\mathbb {E}}_0[X_0(t) \, X_1(t) \, (1-X_2(t))] \nonumber \\&\quad + \,2 \, (1-m_0) \, \frac{m_0^2}{n-1} \, {\mathbb {E}}_0[X_0(t) \, X_1(t) \, (1-X_1(t))] \nonumber \\&\quad + \,(1-m_0) \, \frac{m_0^2}{n-1} \, {\mathbb {E}}_0[X_1^2(t) \, (1-X_0(t))] \nonumber \\&\quad + \,(1-m_0) \, m_0^2 \, \frac{n-2}{n-1} \, {\mathbb {E}}_0[X_1(t) \, X_2(t) \, (1-X_0(t))] \nonumber \\&\quad + \,\frac{m_0^3}{(n-1)^2} \, {\mathbb {E}}_0[X_1^2(t)(1-X_1(t))] \nonumber \\&\quad + \,\frac{m_0^3(n-2)}{(n-1)^2} \, {\mathbb {E}}_0[X_1^2(t)(1-X_2(t))] \nonumber \\&\quad +\,2 \, m_0^3 \, \frac{(n-2)}{(n-1)^2} \, {\mathbb {E}}_0[X_1(t) \, X_2(t) \, (1-X_1(t))] \nonumber \\&\quad + \,m_0^3 \, \frac{(n-2) \, (n-3)}{(n-1)^2} \, {\mathbb {E}}_0[X_1(t) \, X_2(t) \, (1-X_3(t))] \, , \nonumber \\ \delta _0({\mathbf {m}}_0,{\mathbf {X}}(t))&= (1-m_0)^2 \, {\mathbb {E}}_0[X_0(t) \, (1-X_0(t))] \nonumber \\&\quad + \,m_0 \, (1-m_0) \, {\mathbb {E}}_0[X_0(t) \, (1-X_1(t))] \nonumber \\&\quad + \,m_0(1-m_0) \, {\mathbb {E}}_0[X_1(t) \, (1-X_0(t))] \nonumber \\&\quad + \, \frac{m_0^2}{n-1} \, {\mathbb {E}}_0[X_1(t) \, (1-X_1(t))] \nonumber \\&\quad + \, m_0^2 \, \frac{n-2}{n-1} \, {\mathbb {E}}_0[X_1(t) \, (1-X_2(t))] \, , \end{aligned}$$
(A.3)

and for all \(i=1,\ldots , n-1\):

$$\begin{aligned} \lambda _i({\mathbf {m}}_1,{\mathbf {X}}(t))&= m_1^3\,{\mathbb {E}}_0[X_0(t)^2\,(1-X_0(t))] \nonumber \\&\quad +\,m_1^2\,(1-m_1)\,{\mathbb {E}}_0[X_0(t)^2\,(1-X_1(t))] \nonumber \\&\quad +\,2\,m_1^2\,(1-m_1)\,{\mathbb {E}}_0[X_0(t)\,(1-X_0(t))\,X_1(t)] \nonumber \\&\quad +\,2\,m_1\,(1-m_1)^2\,{\mathbb {E}}_0[X_0(t)\,X_1(t)\,(1-X_1(t))] \nonumber \\&\quad +\,m_1\,(1-m_1)^2\,{\mathbb {E}}_0[X_1(t)^2\,(1-X_0(t))] \nonumber \\&\quad +\,(1-m_1)^3\,{\mathbb {E}}_0[X_1^2(t)\,(1-X_1(t))]\,, \nonumber \\ \delta _i({\mathbf {m}}_1,{\mathbf {X}}(t))&= m_1^2\,{\mathbb {E}}_0[X_0(t)\,(1-X_0(t))] \nonumber \\&\quad +\,m_1\,(1-m_1)\,{\mathbb {E}}_0[X_0(t)\,(1-X_1(t))] \nonumber \\&\quad +\,m_1\,(1-m_1)\,{\mathbb {E}}_0[X_1(t)\,(1-X_0(t))] \nonumber \\&\quad +\,(1-m_1)^2\,{\mathbb {E}}_0[X_1(t)\,(1-X_1(t))]\,. \end{aligned}$$
(A.4)

Appendix B Proof of Proposition 2

Here, we calculate \({\mathbb {E}}_0\big [X_i(t)\,X_j(t)\,(1-X_k(t))\big ]\) and \({\mathbb {E}}_0\big [X_i(t)\,(1-X_j(t))\big ]\) with \(i,j,k\in \{0,1,2,3\}\), in terms of the submatrices LFQ of (8) the transition matrix K of the ancestral process \(\sigma (t)\), that describes the locations of the ancestors of 3 individuals.

For each \(k\in \{1,\ldots N_1\}\) and \(i\in \{0,\ldots n-1\}\), let \(\xi _{k,i}\) denote the random variable that assigns the value 1 to the k-th individual in deme i if it is of type A and the value 0, otherwise:

$$\begin{aligned} \xi _{k, i}(t) := \left\{ \begin{array}{ll} 1\,, &{} \text {if individual}\ k\ \text {in deme}\ i\ \text {at time}\ t\ \text {is of type}\ A, \\ 0\,, &{} \text {otherwise}. \end{array} \right. \end{aligned}$$

Let us first focus on \(\sum _{t\ge 0}{\mathbb {E}}_0\big [X_0^2(t) \, (1-X_0(t))\big ]\). The frequency of A in the continent at time t can be written in terms of the \(\xi _{k,0}(t)\) as:

$$\begin{aligned} X_0(t)= \frac{1}{N_0}\sum _{k=1}^{N_0}\xi _{k,0}(t)\,. \end{aligned}$$

Thus, we have:

$$\begin{aligned}&{\mathbb {E}}_0\big [X_0^2(t)(1-X_0(t))\big ] = \frac{1}{N_0^3} {\mathbb {E}}_0\left[ \left( \sum _{k=1}^{N_0}\xi _{k,0}(t)\right) ^2 \left( \sum _{l=1}^{N_0}(1-\xi _{l,0}(t))\right) \right] \nonumber \\&\quad = \frac{1}{N_1^3}\sum _{k=1}^{N_1}\sum _{l=1}^{N_1}\sum _{m=1}^{N_1} {\mathbb {E}}_0\big [ \xi _{k,0}(t)\,\xi _{l,0}(t)\,(1-\xi _{m,0}(t)) \big ] \nonumber \\&\quad = \Bigl (1-\frac{1}{N_0}\Bigr )\, \Bigl (1-\frac{2}{N_0}\Bigr )\, \alpha _0(t) + \frac{1}{N_0}\,\Bigl (1-\frac{1}{N_0}\Bigr )\,\beta _0(t)\,, \end{aligned}$$
(A.5)

where:

$$\begin{aligned} \alpha _0(t)&:= {\mathbb {P}}_0\Bigl ( \xi _{1,0}(t)=\xi _{2,0}(t)=1\,,\ \xi _{3,0}(t)=0\Bigr )\,,\\ \beta _0(t)&:= {\mathbb {P}}_0\Bigl (\xi _{1,0}(t)=1\,,\ \xi _{2,0}(t)=0\Bigr )\,. \end{aligned}$$

Now, let us calculate \(\sum _{t\ge 0}\alpha _0(t)\). According to its definition, \(\alpha _0(t)\) is the probability that individuals 1, 2 and 3 from deme 0 at time t are of respective types A, A and B. Since a single mutant A was introduced in the continent at time 0, individuals 1, 2 and 3 in deme 0 at time t are of types A, A and B, respectively, if a single coalescence occurs from time t to time 0, this event being a coalescence between the lineages of individuals 1 and 2, and the two distinct ancestors at time 0 of these three individuals are of respective types A (for the common ancestor of individuals 1 and 2) and B (for the ancestor of individual 3). This implies that the state \(\sigma (t)\) in S, the ancestors of those three individuals are in t generations back, must either be 00 or 01, while the type of the ancestor common to individuals 1 and 2 is A. Thus, \(\alpha _0(t)\) is equal to the probability that the process \(\sigma (t)\) is in state 00 or 01 at time t given that \(\sigma (0)\) is in state 000 in \(S_{1,2,3}\), times \(1/N_0\), which is the frequency of A in the continent at time 0. Using the notations in Eq. (8) for the block form of K, the transition matrix of \(\sigma (.)\), this translates as follows:

$$\begin{aligned} \alpha _0(t) = \sum _{\tau =1}^t\Big (F^{\tau -1} \, Q \, L^{t-\tau } \, u\Big )_{000} \, , \end{aligned}$$

where u is the column vector \(u=(1/N_0,1/N_0,0,0,0)\), and index 000 refers to the vector’s component that corresponds to the chain starting in state 000. As a consequence, since matrices \(I-F\) and \(I-L\) are invertible, where I refers to an identity matrix of appropriate order, if we sum \(\alpha _0(t)\) over \(t\ge 0\), we find that:

$$\begin{aligned} \sum _{t\ge 0} \alpha _0(t) = \Big ((I-F)^{-1} \, Q \, (I-L)^{-1} \, u\Big )_{000} \, . \end{aligned}$$
(A.6)

Similarly, we find that:

$$\begin{aligned} \beta _0(t) := {\mathbb {P}}_0\big (\xi _{1,0}(t)=1 \, ,\ \xi _{2,0}(t)=0\big ) = (L^tu)_{00} \, , \end{aligned}$$

leading to:

$$\begin{aligned} \sum _{t\ge 0} \beta _0(t)=\Big ((I-L)^{-1}u\Big )_{00} \, . \end{aligned}$$
(A.7)

Let:

$$\begin{aligned} {\mathcal {U}}&:=(I-L)^{-1} \, u\,,&\text {and}&{\mathcal {V}}&:=(I-F)^{-1}\,Q\,(I-L)^{-1}u\,. \end{aligned}$$

We then derive from (A.5), (A.6) and (A.7) that:

$$\begin{aligned} \sum _{t\ge 0}{\mathbb {E}}_0\bigl (X_0(t)^2\,(1-X_0(t))\bigr )&= \textstyle (1-\frac{1}{N_0})\,(1-\frac{2}{N_0})\,{\mathcal {V}}_{000} + \frac{1}{N_0}\,(1-\frac{1}{N_0})\,{\mathcal {U}}_{00}\,. \end{aligned}$$
(A.8a)

In the same way, we find that

$$\begin{aligned}&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)^2\,(1-X_1(t))\big ] = \textstyle (1-\frac{1}{N_1})\,(1-\frac{2}{N_1})\,{\mathcal {V}}_{111} +\frac{1}{N_1}\,(1-\frac{1}{N_1})\,{\mathcal {U}}_{11}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_0(t)^2\,(1-X_1(t))\big ] = \textstyle (1-\frac{1}{N_0})\,{\mathcal {V}}_{001}+\frac{1}{N_0}\,{\mathcal {U}}_{01}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)^2\,(1-X_0(t))\big ] = \textstyle (1-\frac{1}{N_1})\,{\mathcal {V}}_{110}+\frac{1}{N_1}\,{\mathcal {U}}_{10}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_0(t)\,X_1(t)\,(1-X_0(t))\big ] = \textstyle (1-\frac{1}{N_0})\,{\mathcal {V}}_{010}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_0(t)\,X_1(t)\,(1-X_1(t))\big ] = \textstyle (1-\frac{1}{N_1})\,{\mathcal {V}}_{011}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)^2\,(1-X_2(t))\big ] = \textstyle (1-\frac{1}{N_1})\,{\mathcal {V}}_{112} +\frac{1}{N_1}\,{\mathcal {U}}_{12}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)\,X_2(t)\,(1-X_1(t))\big ] = \textstyle (1-\frac{1}{N_1})\,{\mathcal {V}}_{112}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_0(t)\,X_1(t)\,(1-X_2(t))\big ] = {\mathcal {V}}_{012}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)\,X_2(t)\,(1-X_0(t))\big ] = \textstyle {\mathcal {V}}_{120}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)\,X_2(t)\,(1-X_3(t))\big ] = {\mathcal {V}}_{123}, \end{aligned}$$
(A.8b)
$$\begin{aligned}&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_0(t)\,(1-X_0(t))\big ] = \textstyle \big (1-\frac{1}{N_0}\big )\,{\mathcal {U}}_{00}, \end{aligned}$$
(A.8c)
$$\begin{aligned}&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)\,(1-X_1(t))\big ] = \textstyle \big (1-\frac{1}{N_1}\big )\,{\mathcal {U}}_{11}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_0(t)\,(1-X_1(t))\big ] = {\mathcal {U}}_{01}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)\,(1-X_0(t))\big ] = {\mathcal {U}}_{10}, \nonumber \\&\textstyle \sum _{t\ge 0}{\mathbb {E}}_0\big [X_1(t)\,(1-X_2(t))\big ] = {\mathcal {U}}_{12}. \end{aligned}$$
(A.8d)

Appendix C Approximations under the Structured Coalescent Assumptions

Here, we give the formulae for coefficients \(\gamma _{i}\) and \(\delta _{i}\), \(i=0,1\) as functions of the population parameters nMP and \(\Lambda \) derived using Maple.

$$\begin{aligned} \gamma _{0} =\frac{\gamma _{01}}{3(Mn-M+1-2P+nP)\gamma _{02}} \end{aligned}$$
(A.9)

where

$$\begin{aligned} \gamma _{01}&=16P^5+6M^5Pn-71M^2nP+29M^2n^2P-39M^2n^2P^2+11M^2nP^2 \\&\quad -\,59M^2n^2P^3+22Mn^2P+M^4P^2-13M^3P^2+3M^5n-2M^5P+10M^2P^2 \\ {}&\quad +\,11M^2n^2P^4+2M^2n^2P^5-52Mn^2P^3+4Mn^2P^4+22MnP^4+4Mn^3P^2 \\ {}&\quad +\,72MP^2+56M^3nP^3-28MP^3-12P^3n^2-34M^3n^2P^2+116MnP^3 \\ {}&\quad -\,11M^3Pn+6M^3n^2-10M^4P^3+11M^3P-36nP^2-15M^3n-20MP \\ {}&\quad -\,24P^4M^2 -40M^2P^3+M^5n^3-3M^5n^2-44MP^4+16MP^5+2M^3n^3 \\ {}&\quad -\,4M^3P^4+113M^2nP^3+20M^4nP^3-16P^2-4n^2P^4+12nP-8M^2nP^5 \\ {}&\quad +\,36nP^4+3M^4n-20MP^5n+8Mn^2P^2+6M^2n^3P+10M^2n^3P^2+12n^2P^2 \\ {}&\quad +\,39M^3nP^2+13M^3n^3P+6MP^5n^2+8M^3n^3P^2-32M^3n^2P^3+4M^3n^2P^4 \\ {}&\quad -\,6M^5n^2P+2M^5n^3P-M^5-6M^2+8M^2n^2+9M^4n^3P+2M^4n^3P^2 \\ {}&\quad -\,23M^4n^2P-3M^4n^2P^2-10M^4n^2P^3+19M^4nP+7M^3-M^2n \\ {}&\quad -\,13M^3n^2P-24M^3P^3-5M^4P+6Mn-8MnP-104MnP^2+56P^3-56P^4 \\ {}&\quad +\,36M^2P+8M^2P^5+4M^2nP^4+4n^2P^5-16nP^5+3M^4n^3-6M^4n^2+4nP^3, \end{aligned}$$

and

$$\begin{aligned} \gamma _{02}&=4M+6M^2nP+6M^2n^2P+6M^2n^2P^2-20M^2nP^2+8P+16M^2P^2-20MP^2 \nonumber \\&\quad -\,8M^3nP^3+32MP^3+2M^3n^2P^2-20MnP^3-11M^3Pn+2M^3n^2+4M^3P \nonumber \\&\quad +\,8nP^2-M^3n-12MP+16M^2P^3-16M^2nP^3-24P^2-2M^4n+4Mn^2P^2 \nonumber \\&\quad -\,2M^3nP^2+M^4-4M^2+2M^4n^2P-4M^4nP-M^3+6M^2n+7M^3n^2P \nonumber \\&\quad +\,8M^3P^3+2M^4P+16MnP-4MnP^2+16P^3-16M^2P+M^4n^2-8nP^3. \nonumber \\ \gamma _{1}&=\frac{\gamma _{11}}{3(n-1)(Mn-M+1-2P+nP)\gamma _{12}} \end{aligned}$$
(A.10)

where

$$\begin{aligned} \gamma _{11}&=-16P^5-8M-8M^5Pn+93M^2nP-92M^2n^2P-2M^2n^2P^2+47M^2nP^2 \\ {}&\quad +\,96M^2n^2P^3+36Mn^2P-16P-M^4P^2+29M^3P^2+8M^3n^4P^2+2M^5n^4P \\ {}&\quad -\,4M^5n+2M^5P-26M^2P^2-26M^3n^3P^3+4M^3n^3P^4+9M^3n^4P \\ {}&\quad +\,29M^2n^2P^4-10M^2n^2P^5+62Mn^2P^3 +14Mn^2P^4-38MnP^4+18Mn^3P^2 \\ {}&\quad -\,100MP^2-50M^3nP^3-4M^3nP^4+36MP^3-33M^2n^3P^3-28P^3n^2 \\ {}&\quad +\,101M^3n^2P^2-M^2n^3P^4+2M^2n^3P^5-58MnP^3+42M^3Pn-20Mn^3P^3 \\ {}&\quad +\,2Mn^3P^4-35M^3n^2+10M^4P^3-17M^3P-68nP^2+M^5n^4+34M^3n \\ {}&\quad +\,60MP+32P^4M^2+24M^2P^3-4M^5n^3+6M^5n^2+12MP^4+12M^3n^3+4M^3P^4 \\ {}&\quad -\,87M^2nP^3-10M^4n^3P^3+M^4nP^2-30M^4nP^3+72P^2+20n^2P^4+12nP \\ {}&\quad +\,16M^2nP^5 -76nP^4+3M^4n^4-3M^4n+4MP^5n-110Mn^2P^2+33M^2n^3P \\ {}&\quad -\,25M^2n^3P^2+12n^2P^2-90M^3nP^2-10M^3n^3P-2MP^5n^2-48M^3n^3P^2 \\ {}&\quad +\,64M^3n^2P^3-4M^3n^2P^4+12M^5n^2P -8M^5n^3P+M^5+18M^2+15M^2n^2 \\ {}&\quad -32M^4n^3P-5M^4n^3P^2+42M^4n^2P+3M^4n^2P^2+30M^4n^2P^3-24M^4nP \\ {}&\quad -\,11M^3+6M^2n^4P^2-33M^2n-24M^3n^2P +12M^3P^3+5M^4P+6Mn \\ {}&\quad -\,86MnP+172MnP^2-112P^3+72P^4+9M^4n^4P+2M^4n^4P^2 -34M^2P \\ {}&\quad -\,8M^2P^5-60M^2nP^4-4n^2P^5+16nP^5-9M^4n^3+9M^4n^2+116nP^3 \end{aligned}$$

and

$$\begin{aligned} \gamma _{12}&=4M+6M^2nP+6M^2n^2P+6M^2n^2P^2-20M^2nP^2+8P+16M^2P^2-20MP^2 \nonumber \\&\quad -\,8M^3nP^3 +32MP^3+2M^3n^2P^2-20MnP^3-11M^3Pn+2M^3n^2+4M^3P \nonumber \\&\quad +\,8nP^2-M^3n -12MP+16M^2P^3-16M^2nP^3-24P^2-2M^4n+4Mn^2P^2 \nonumber \\&\quad -\,2M^3nP^2+M^4-4M^2+2M^4n^2P-4M^4nP-M^3+6M^2n+7M^3n^2P \nonumber \\&\quad +\,8M^3P^3+2M^4P+16MnP-4MnP^2+16P^3-16M^2P+M^4n^2-8nP^3.\nonumber \\ \delta _0&= \frac{-P+Mn+n-M}{Mn-M+1-2P+nP} \ ; \ \delta _1=\frac{1-P+Mn-M}{Mn-M+1-2P+nP} \end{aligned}$$
(A.11)
$$\begin{aligned}&(1-u_0)\delta _1+u_0\delta _0=1.\nonumber \\&\Lambda (M,n,P) = (1-u_0)\,\gamma _1+u_0\,\gamma _0 = \rho _{1}/\rho _{2} \end{aligned}$$
(A.12)

with:

$$\begin{aligned} \rho _{1}&= -8M+4Mn^3P^2+41M^2nP^3-12MP^4+8MP^5+M^4n^3+12n^2P^2 \\ {}&\quad -\,50MnP+39M^2nP^2-16P+56P^2+12nP-52nP^2+44nP^3+4nP^4 \\ {}&\quad +24Mn^2P+6Mn+5M^3P^2+2MnP^2+6Mn^2P^5+10M^2 \\ {}&\quad -\,21M^3n^2P-56P^3-10M^3n^2P^3-23M^2n^2P^2-25M^2n^2P^3 \\ {}&\quad +\,8M^2n^2P^4-10M^3nP^2+20M^3nP^3+8M^2n^3P+4M^2n^3P^2-M^4 \\ {}&\quad -\,5M^3P+3M^4n-10M^3P^3-26Mn^2P^3+2M^4n^3P-14Mn^2P^2 \\ {}&\quad -\,2Mn^2P^4-5M^2n^2P-12M^2nP^4-13M^2nP-12P^3n^2+8M^3n^3P \\ {}&\quad -\,16MP^3-2M^4P+10M^2P-7M^3n^2+62MP^3n+4MP^4n \\ {}&\quad -\,12MP^5n-6M^4Pn^2+6M^4Pn+9M^2n^2+5M^3n-19M^2n+36MP \\ {}&\quad -\,12MP^2+5M^3n^2P^2-20M^2P^2-16M^2P^3-M^3+16P^4+4n^2P^5 \\ {}&\quad -\,8nP^5+3M^3n^3-3M^4n^2+4P^4M^2+18M^3nP-4n^2P^4\,,\\ \rho _{2}&= 3(n-1)(4M-16M^2nP^3+16MnP-20M^2nP^2+8P-24P^2 \\ {}&\quad +\,8nP^2-8nP^3-4MnP^2-4M^2+7M^3n^2P+16P^3 \\ {}&\quad +\,6M^2n^2P^2-2M^3nP^2-8M^3nP^3+M^4+4M^3P-2M^4n \\ {}&\quad +\,8M^3P^3+4Mn^2P^2+6M^2n^2P+6M^2nP+32MP^3+2M^4P \\ {}&\quad -\,16M^2P+2M^3n^2-20MP^3n+2M^4Pn^2-4M^4Pn-M^3n \\ {}&\quad +\,6M^2n-12MP-20MP^2+2M^3n^2P^2+16M^2P^2 +16M^2P^3 \\&\quad -\,M^3+M^4n^2-11M^3nP)\,. \end{aligned}$$

Appendix D Transition Probabilities

Matrix K is the probability transition matrix, under neutrality, for the ancestral process \(\sigma (t)\) that traces the spatial locations of the ancestors of 3 individuals, labelled individuals 1, 2, 3, over one time step backwards in time. Following Eq. (8),

For the calculation of the first-order expansion of the fixation probability (see Proposition 2), only submatrices F, Q, R, and L are needed (resp. of sizes \(15\times 15\), \(5\times 15\), \(5\times 5\), \(5\times 2\)), so we do not compute the other submatrices. We now give the detailed expressions for F, Q, R, and L. As the square \(15\times 15\) matrix F is cumbersome, it is decomposed into three \(5\times 15\) submatrices:

$$\begin{aligned} F = (F^{(1)} \ F^{(2)}\ , F^{(3)})\,. \end{aligned}$$
(A.13)

The computation of these matrices does not present any specific difficulties apart from their size. Before giving their expressions, we shall present how the first line related to transitions from the “000” state (in which the lineages of individuals 1, 2, 3 are not coalesced and on the continent at the given time t) is computed, leaving the reader to detail the other lines. For the “000” state, only the terms in the first row of sub-matrices F and Q need to be detailed.

From the “000 state” going one generation back in time, the possible transitions are broken down as follows:

  • 0 coalescence, corresponding to the matrix F, in which case there can either be:

    • 0 migration: the 3 parents remain on the continent \(\rightarrow \) 1 possibility: \(000\rightarrow 000\)

    • 1 migration (and only 1, this is no longer specified in the following): \(\rightarrow \) 3 possibilities: \(000\rightarrow \{001, 010, 100\}\)

    • 2 migrations

      • \(*\) to the same island \(\rightarrow \) 3 possibilities: \(000\rightarrow \{011, 101, 110\}\)

      • \(*\) to 2 distinct islands \(\rightarrow \) 3 possibilities: \(000\rightarrow \{012, 102, 120\}\)

    • 3 migrations

      • \(*\) to the same island \(\rightarrow \) 1 possibility: \(000\rightarrow 111\)

      • \(*\) to 2 distinct islands \(\rightarrow \) 3 possibilities: \(000\rightarrow \{ 112, 121, 211\}\)

      • \(*\) to 3 distinct islands \(\rightarrow \) 1 possibility: \(000\rightarrow 123\)

  • 1 coalescence (only one is possible: the one of the lineages of individuals 1 and 2) corresponding to matrix Q, in which case there can either be:

    • 0 migration \(\rightarrow \) 1 possibility: \(000\rightarrow 00\)

    • 1 migration (the one of the lineage of individual 3) \(\rightarrow \) 1 possibility: \(000\rightarrow 01\)

    • 2 migrations (the one of the lineages of individuals 1 and 2) \(\rightarrow \) 1 possibility: \(000\rightarrow 10\)

    • 3 migrations:

      • \(*\) to the same island \(\rightarrow \) 1 possibility: \(000\rightarrow 11\)

      • \(*\) to 2 distinct islands \(\rightarrow \) 1 possibility: \(000\rightarrow 12\)

In conclusion, we obtain 20 possible transitions for the 000 state (i.e., transitions to states in \(S_{1,2,3}\cup S_{12,3}\)), corresponding to the 20 terms of the first line of F and Q. In each case, the computation of the transition probabilities is immediate.

figure a
figure b
figure c

The expressions for submatrices \(F^{(1)}\), \(F^{(2)}\), \(F^{(3)}\), Q, L and R are now given below.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladret, V. Evolutionary Game Dynamics in a Finite Continental Island Population Model and Emergence of Cooperation. Dyn Games Appl 12, 1338–1375 (2022). https://doi.org/10.1007/s13235-022-00443-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-022-00443-1

Keywords

Navigation