Skip to main content
Log in

Strategic Interactions in a One-Sector Growth Model

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

We study the effect of dynamic and investment externalities in a one-sector growth model. In our model, two agents interact strategically in the utilization of capital for consumption, savings, and investment in technical progress. We consider two types of investment choices: complements and substitutes. For each case, we derive the equilibrium and provide the corresponding stationary distribution. We then compare the equilibrium with the social planner’s solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Capital externalities are called biological externalities in the context of natural resources.

  2. We consider the equilibrium path of capital corresponding to the Cournot equilibrium. For the study of the equilibrium path of capital in a decentralized economy, see [17].

  3. The investment externality in this paper is different from the biological (or capital) externality studied in two-sector growth models [47]. The biological externality arises directly from the presence of two goods. That is, the future stock of one type of capital depends on the interaction of the savings for both types of capital. In our one-sector growth model, there is only one stock of capital, i.e., aggregate capital.

  4. A tilde sign distinguishes a random variable from its realization.

  5. To simplify the discussion, we omit the finite-horizon case. Our results on the tragedy of the commons hold for any finite horizons.

  6. When investment choices are complementary, compare (32) and (72). With substitutes, compare (61) and (73).

  7. Recall that in our model investment is required to maintain the capital. Without investment, the stationary distribution is degenerate at zero.

References

  1. Amir R, Mirman LJ, Perkins WR (1991) One-sector nonclassical optimal growth: optimality conditions and comparative dynamics. Int Econ Rev 32(3):625–644

    Article  MathSciNet  MATH  Google Scholar 

  2. Brock WA, Mirman LJ (1972) Optimal economic growth and uncertainty: the discounted case. J Econ Theory 4(3):479–513

    Article  MathSciNet  Google Scholar 

  3. Cass D (1965) Optimum growth in an aggregative model of capital accumulation. Rev Econ Stud 32(3):233–240

    Article  Google Scholar 

  4. Datta M, Mirman LJ (1999) Externalities, market power, and resource extraction. J Environ Econ Manage 37(3):233–255

    Article  MATH  Google Scholar 

  5. Datta M, Mirman LJ (2000) Dynamic externalities and policy coordination. Rev Econ Rev 8(1):44–59

    Google Scholar 

  6. Fischer RD, Mirman LJ (1992) Strategic dynamic interaction: fish wars. J Econ Dyn control 16(12):267–287

    Article  MATH  Google Scholar 

  7. Fischer RD, Mirman LJ (1996) The compleat fish wars: biological and dynamic interactions. J Environ Econ Manage 30(1):34–42

    Article  MATH  Google Scholar 

  8. Koopmans TC (1965) On the concept of economic growth. In Semaine d’Étude sur le Rôle de l’Analyse Économétrique dans la Formulation de Plans de Développement, vol 28. Pontificau Academiae Scientiarum Scripta Varia, Vatican, pp 225–300

  9. Koulovatianos C, Mirman LJ (2007) The effects of market structure on industry growth: rivalrous non-excludable capital. J Econ Theory 133(1):199–218

    Article  MathSciNet  MATH  Google Scholar 

  10. Koulovatianos C, Mirman LJ, Santugini M (2009) Optimal growth and uncertainty: learning. J Econ Theory 144(1):280–295

    Article  MathSciNet  MATH  Google Scholar 

  11. Levhari D, Mirman LJ (1980) The great fish war: an example using a dynamic Cournot-Nash solution. Bell J Econ 11(1):322–334

    Article  MathSciNet  MATH  Google Scholar 

  12. Mirman LJ (1972) On the existence of steady state measures for one sector growth models with uncertain technology. Int Econ Rev 13(2):271–286

    Article  MathSciNet  MATH  Google Scholar 

  13. Mirman LJ (1973) The steady state behavior of a class of one sector growth models with uncertain technology. J Econ Theory 6(3):219–242

    Article  MathSciNet  Google Scholar 

  14. Mirman LJ (1979) Dynamic models of fishing: a Heuristic approach. In: Liu P-T, Sutinen JG (eds) Control theory in mathematical economics. Marcel Dekker, New York, pp 39–73

    Google Scholar 

  15. Mirman LJ, Santugini M (2014) Learning and technological progress in dynamic games. Dyn games Appl 4(1):58–72

    Article  MathSciNet  MATH  Google Scholar 

  16. Mirman LJ, Zilcha I (1975) On optimal growth under uncertainty. J Econ Theory 11(3):329–339

    Article  MathSciNet  MATH  Google Scholar 

  17. Mirman LJ, Morand O, Reffett K (2008) A qualitative approach to Markovian equilibrium in infinite horizon economies with capital. J Econ Theory 139(1):75–98

    Article  MathSciNet  MATH  Google Scholar 

  18. Solow RM (1956) A contribution to the theory of economic growth. Q J Econ 70(1):65–94

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the two anonymous referees.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Santugini.

Appendix: Solution of the Social Planner

Appendix: Solution of the Social Planner

In this Appendix, we derive the social planner’s solution in the case of complementary and substitutionary investment choices. We consider the infinite horizon by conjecturing that the value function is of the form \(W^{\infty }(y) = \kappa _{\infty } \ln y + \Psi _{\infty }\). As noted, the linear conjecture can be inferred by solving the problem recursively.

Given \(W^{\infty }(y) = \kappa _{\infty } \ln y + \Psi _{\infty }\), (62) is rewritten as

$$\begin{aligned} W^{\infty }(y) =&~ \max _{\{e_{j},i_{j}\}_{j=1}^{2}} \left\{ \ln (e_{1}-i_{1}) + \ln (e_{2}-i_{2}) + \delta \kappa _{\infty } \overline{\eta }_{1} \ln i_{1} + \delta \kappa _{\infty } \overline{\eta }_{2} \ln i_{2} \right. \nonumber \\&~ \left. + \delta \kappa _{\infty } \overline{\alpha } \ln (y-e_{1}-e_{2}) + \delta \Psi _{\infty } \right\} \end{aligned}$$
(76)

if investment choices are complementary and

$$\begin{aligned} W^{\infty }(y) =&~ \max _{\{e_{j},i_{j}\}_{j=1}^{2}} \left\{ \ln (e_{1}-i_{1}) + \ln (e_{2}-i_{2}) + \delta \kappa _{\infty } \overline{\eta } \ln (i_{1}+i_{2}) \right. \nonumber \\&~ \left. + \delta \kappa _{\infty } \overline{\alpha } \ln (y-e_{1}-e_{2}) + \delta \Psi _{\infty } \right\} \end{aligned}$$
(77)

if investment choices are substitutionary.

For complements, for \(j=1,2\), the first-order conditions corresponding to (76) are

$$\begin{aligned} e_{j}&: \frac{1}{e_{j}-i_{j}} = \frac{\delta \kappa _{\infty } \overline{\alpha }}{y-e_{1}-e_{2}}, \end{aligned}$$
(78)
$$\begin{aligned} i_{j}&: \frac{1}{e_{j}-i_{j}} = \frac{\delta \kappa _{\infty } \overline{\eta }_{j}}{i_{j}}, \end{aligned}$$
(79)

which yields

$$\begin{aligned} E_{j}^{*\infty }(y)&= \frac{1 + \delta \kappa _{\infty } \overline{\eta }_{j}}{2 + \delta \kappa _{\infty } (\overline{\eta }_{1}+\overline{\eta }_{2}+\overline{\alpha })} y, \end{aligned}$$
(80)
$$\begin{aligned} I_{j}^{*\infty }(y)&= \frac{\delta \kappa _{\infty } \overline{\eta }_{j}}{2 + \delta \kappa _{\infty } (\overline{\eta }_{1}+\overline{\eta }_{2}+\overline{\alpha })} y. \end{aligned}$$
(81)

Plugging (80) and (81) back into (76) implies that

$$\begin{aligned} \kappa _{\infty } = \frac{2}{1-\delta (\overline{\eta }_{1}+\overline{\eta }_{2}+\overline{\alpha })}. \end{aligned}$$
(82)

Plugging (82) into (80) and (81) and summing over \(j\) yields (63) and (65). Plugging (63) and (65) into \(\sum \nolimits _{j=1}^{2} C^{*\infty }_{j}(y) = \sum \nolimits _{j=1}^{2} (E^{*\infty }_{j}(y) - I^{*\infty }_{j}(y))\) yields (64).

For substitutes, for \(j=1,2\), the first-order conditions corresponding to (77) are

$$\begin{aligned} e_{j}&: \frac{1}{e_{j}-i_{j}} = \frac{\delta \kappa _{\infty } \overline{\alpha }}{y-e_{1}-e_{2}} \end{aligned}$$
(83)
$$\begin{aligned} i_{j}&: \frac{1}{e_{j}-i_{j}} = \frac{\delta \kappa _{\infty } \overline{\eta }}{i_{1}+i_{2}}, \end{aligned}$$
(84)

which yields

$$\begin{aligned} E_{j}^{*\infty }(y)&= \frac{2 + \delta \kappa _{\infty } \overline{\eta }}{4 + 2 \delta \kappa _{\infty } (\overline{\eta } + \overline{\alpha })} y \end{aligned}$$
(85)
$$\begin{aligned} I_{1}^{*\infty }(y)+I_{2}^{*\infty }(y)&= \frac{\delta \kappa _{\infty } \overline{\eta }}{2 + \delta \kappa _{\infty } (\overline{\eta } + \overline{\alpha }) } y \end{aligned}$$
(86)

since the social planner only needs to solve for total investment. Plugging (85) and (86) back into (77) yields

$$\begin{aligned} \kappa _{\infty } = \frac{2}{1-\delta (\overline{\eta } + \overline{\alpha })}. \end{aligned}$$
(87)

Plugging (87) into (85) and summing over \(j\) yields (66). Plugging (87) into (86) yields (68). Plugging (66) and (68) into \(\sum \nolimits _{j=1}^{2} C^{*\infty }_{j}(y) = \sum \nolimits _{j=1}^{2} (E^{*\infty }_{j}(y) - I^{*\infty }_{j}(y))\) yields (67).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fesselmeyer, E., Mirman, L.J. & Santugini, M. Strategic Interactions in a One-Sector Growth Model. Dyn Games Appl 6, 209–224 (2016). https://doi.org/10.1007/s13235-015-0150-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-015-0150-6

Keywords

Navigation