Skip to main content
Log in

Stochastic Differential Games and Energy-Efficient Power Control

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

One of the contributions of this work is to formulate the problem of energy-efficient power control in multiple access channels (namely, channels which comprise several transmitters and one receiver) as a stochastic differential game. The players are the transmitters who adapt their power level to the quality of their time-varying link with the receiver, their battery level, and the strategy updates of the others. The proposed model not only allows one to take into account long-term strategic interactions, but also long-term energy constraints. A simple sufficient condition for the existence of a Nash equilibrium in this game is provided and shown to be verified in a typical scenario. As the uniqueness and determination of equilibria are difficult issues in general, especially when the number of players goes large, we move to two special cases: the single player case which gives us some useful insights of practical interest and allows one to make connections with the case of large number of players. The latter case is treated with a mean-field game approach for which reasonable sufficient conditions for convergence and uniqueness are provided. Remarkably, this recent approach for large system analysis shows how scalability can be dealt with in large games and only relies on the individual state information assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agarwal M, Honig M (2012) Adaptive training for correlated fading channels with feedback. IEEE Trans Inf Theory 58(8):5398–5417

    Article  MathSciNet  Google Scholar 

  2. Basar T, Olsder GJ (1999) Dynamic noncooperative game theory, 2nd edn. Classics in applied mathematics. SIAM, Philadelphia

    MATH  Google Scholar 

  3. Belmega EV, Lasaulce S (2011) Energy-efficient precoding for multiple-antenna terminals. IEEE Trans Signal Process 59(1):329–340

    Article  MathSciNet  Google Scholar 

  4. Belmega EV, Lasaulce S, Debbah M (2009) Power allocation games for MIMO multiple access channels with coordination. IEEE Trans Wirel Commun 8(5):3182–3192

    Article  Google Scholar 

  5. Bonneau N, Debbah M, Altman E, Hjørungnes A (2008) Non-atomic games for multi-user system. IEEE J Sel Areas Commun 26(7):1047–1058

    Article  Google Scholar 

  6. Bressan A (2010) Noncooperative differential games. A tutorial

  7. Buzzi S, Saturnino D (2011) A game-theoretic approach to energy-efficient power control and receiver design in cognitive CDMA wireless networks. IEEE J Sel Top Signal Process 5(1):137–150

    Article  Google Scholar 

  8. Cover TM, Thomas JA (1991) Elements of information theory. Wiley-Interscience, New York

    Book  MATH  Google Scholar 

  9. Dumont J, Hachem W, Lasaulce S, Loubaton P, Najim J (2010) On the capacity achieving covariance matrix of Rician mimo channels: an asymptotic approach. IEEE Trans Inf Theory 56(3):1048–1069

    Article  MathSciNet  Google Scholar 

  10. Evans L (2010) Partial differential equations. American Mathematical Society, Providence

    MATH  Google Scholar 

  11. Fette BA (2006) Cognitive radio technology. Elsevier, Amsterdam

    Google Scholar 

  12. Fleming W, Soner H (1993) Controlled Markov processes and viscosity solutions. Applications of mathematics. Springer, Berlin

    MATH  Google Scholar 

  13. Foschini GJ, Miljanic Z (1993) A simple distributed autonomous power control algorithm and its convergence. IEEE Trans Veh Technol 42(4):641–646

    Article  Google Scholar 

  14. Goodman DJ, Mandayam NB (2000) Power control for wireless data. IEEE Pers Commun 7:48–54

    Article  Google Scholar 

  15. Gupta P, Kumar PR (1997) A system and traffic dependent adaptive routing algorithm for ad hoc networks. In: IEEE conf on decision and control (CDC), San Diego, USA, pp 2375–2380

    Google Scholar 

  16. Karatzas I, Shreve S (1991) Brownian motion and stochastic calculus. Springer, Berlin

    MATH  Google Scholar 

  17. Lasaulce S, Tembine H (2011) Game theory and learning for wireless networks: fundamentals and applications. Academic Press, New York

    Google Scholar 

  18. Lasaulce S, Hayel Y, Azouzi RE, Debbah M (2009) Introducing hierarchy in energy games. IEEE Trans Wirel Commun 8(7):3833–3843

    Article  Google Scholar 

  19. Lasry JM, Lions PL (2007) Mean field games. Jpn J Math 2(1):229–260

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Treust M, Lasaulce S (2010) A repeated game formulation of energy-efficient decentralized power control. IEEE Trans Wirel Commun

  21. Mériaux F, Hayel Y, Lasaulce S, Garnaev A (2011) Long-term energy constraints and power control in cognitive radio networks. In: IEEE proc of the 17th international conference on digital signal processing (DSP), Corfu, Greece

    Google Scholar 

  22. Mériaux F, Treust ML, Lasaulce S, Kieffer M (2011) Energy-efficient power control strategies for stochastic games. In: IEEE proc of the 17th international conference on digital signal processing (DSP), Corfu, Greece

    Google Scholar 

  23. Meshkati F, Poor HV, Schwartz SC, Narayan BM (2005) An energy-efficient approach to power control and receiver design in wireless data networks. IEEE Trans Commun 53:1885–1894

    Article  Google Scholar 

  24. Meshkati F, Chiang M, Poor HV, Schwartz SC (2006) A game-theoretic approach to energy-efficient power control in multi-carrier CDMA systems. IEEE J Sel Areas Commun 24(6):1115–1129

    Article  Google Scholar 

  25. Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  26. Olama M, Djouadi S, Charalambous C (2006) Stochastic power control for time-varying long-term fading wireless networks. EURASIP J Appl Signal Process 2006:1–13

    Google Scholar 

  27. Rodriguez V (2003) An analytical foundation for resource management in wireless communication. In: IEEE proc of Globecom, pp 898–902

    Google Scholar 

  28. Saraydar CU, Mandayam NB, Goodman DJ (2002) Efficient power control via pricing in wireless data networks. IEEE Trans Commun 50(2):291–303

    Article  Google Scholar 

  29. Tembine H, Huang M (2011) Mean field difference games: McKean-Vlasov dynamics. In: CDC-ECC, 50th IEEE conference on decision and control and European control conference

    Google Scholar 

  30. Tembine H, Lasaulce S, Jungers M (2010) Joint power control-allocation for green cognitive wireless networks using mean field theory. In: IEEE proc of the 5th intl conf on cognitive radio oriented wireless networks and communications (CROWNCOM), Cannes, France

    Google Scholar 

  31. Tse D, Hanly S (1999) Linear multiuser receivers: effective interference, effective bandwidth and user capacity. IEEE Trans Inf Theory 45:641–657

    Article  MathSciNet  MATH  Google Scholar 

  32. Tulino A, Verdú S (2004) Random matrices and wireless communications. Foundations and trends in communication and information theory. Now, Hanover. The essence of knowledge

    Google Scholar 

  33. Yates RD (1995) A framework for uplink power control in cellular radio systems. IEEE J Sel Areas Commun 13(7):1341–1347

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Mériaux.

Appendices

Appendix A: Proof of Proposition 1

Both results can be proven by using Ito’s formula (see, e.g., [16]). For the mean, from (5), one has

$$ \text{d} \mathbb{E}\bigl[\underline{h}_i(t)\bigr] = \frac{1}{2} \bigl( \underline{\mu } - \mathbb{E}\bigl[\underline{h}_i(t)\bigr]\bigr) \,\text{d}t, $$
(44)

then \(\mathbb{E}[\underline{h}_{i}(t)] = \underline{\mu}(1 - e^{-\frac{t}{2}}) + \underline{h}_{i}(0)e^{-\frac{t}{2}}\). The limit when t goes to +∞ writes

$$ \lim_{t\to+ \infty} \mathbb{E}[\underline{h}_i] = \underline{\mu}. $$
(45)

For the variance, assume that for the two components x i and y i of h i :

$$ \begin{array}{ll} \text{d} x_i(t) = g_x(t)\, \text{d}t + \eta\,\text{d}\mathbb{W}_x, \\\noalign{\vspace{2pt}} \text{d} y_i(t) = g_y(t)\, \text{d}t + \eta\,\text{d}\mathbb{W}_y, \end{array} $$
(46)

with \(\mathbb{W}_{x}\) and \(\mathbb{W}_{y}\) two independent Wiener processes of dimension 1. Then

$$ \text{d} x_i(t)^2 = \bigl(2x_i(t) g_x(t) + \eta^2\bigr) \,\text{d}t + 2 x_i(t) \eta\,\text{d}\mathbb{W}_x, $$
(47)

and

$$ \text{d} \mathbb{E}\bigl[x_i(t)^2\bigr] = \mathbb{E} \bigl[\bigl(2x_i(t) g_x(t) + \eta^2\bigr) \bigr] \,\text{d}t. $$
(48)

If g x (t)=0, \(\mathbb{E}[x_{i}(t)^{2}] = x_{i}(0)^{2} + \eta^{2} t\) and \(\lim_{t \to\infty} \mathbb{E}[x_{i}(t)^{2}] = \infty\). That is the reason why a deterministic term is needed in (5). With \(g_{x}(t) = \frac{1}{2}(\mu_{x} - x_{i}(t))\), one has

$$ \text{d}\mathbb{E}\bigl[x_i(t)^2\bigr] = \mathbb{E} \biggl[2 x_i(t)\frac{1}{2}\bigl(\mu_x - x_i(t) \bigr) + \eta^2\biggr]\, \text{d}t, $$
(49)

then

$$ \frac{\text{d}\mathbb{E}[x_i(t)^2]}{\text{d}t} = -\mathbb{E} \bigl[x_i(t)^2\bigr] + \mu_x \mathbb{E} \bigl[x_i(t)\bigr] + \eta^2. $$
(50)

The solution of this differential equation has the form

$$ \begin{aligned}[b] \mathbb{E}\bigl[x_i(t)^2 \bigr] &= \biggl(x_i(0)^2 + \int_0^t \bigl(\mu_x\mathbb{E}\bigl[x_i\bigl(t' \bigr)\bigr] + \eta^2 \bigr)e^{ t'}\, \text{d}t' \biggr)e^{- t}, \\ &= \bigl[ \bigl(\mu_x^2 + \eta^2 \bigr)e^{t'} + 2 \mu_x \bigl(x_i(0) - \mu_x \bigr)e^{\frac{t'}{2}} \bigr]_0^t e^{- t}, \\ &= \bigl(\mu_x^2 + \eta^2 \bigr) \bigl(1-e^{-t}\bigr) + 2 \mu_x \bigl(x_i(0) - \mu_x \bigr) \bigl(e^{-\frac{t}{2}} -e^{-t}\bigr), \end{aligned} $$
(51)

thus

$$ \lim_{t\to+ \infty} \mathbb{E}\bigl[x_i(t)^2\bigr] = \mu_x^2 + \eta^2. $$
(52)

The analogous is true for y i . Hence, we have

$$ \lim_{t\to+ \infty} \mathbb{E}\bigl[\bigl|\underline{h}_i(t)\bigr|^2 \bigr] = |\underline{\mu}|^2 + 2\eta^2, $$
(53)

and finally

$$ \lim_{t\to+ \infty} \mathbb{E}\bigl[\bigl|\underline{h}_i(t)\bigr|^2 \bigr] - \mathbb {E}\bigl[\bigl|\underline{h}_i(t)\bigr|\bigr]^2 = 2\eta^2. $$
(54)

Regarding to the probability density functions, applying the Kolmogorov forward equation to the state \(\underline{h}_{i}\) with the dynamics given in (5), one has for the component x i

$$ \begin{aligned}[b] \frac{\partial m_x(x_i,t)}{\partial t} &= - \frac{\partial}{\partial x_i} \biggl[m_x(x_i,t)\frac{1}{2} ( \mu_x - x_i) \biggr] + \frac{\eta^2}{2} \frac{\partial^2 m_x(x_i,t)}{\partial x_i^2}, \\ &= \frac{1}{2} m_x(x_i,t) - \frac{1}{2} (\mu_x - x_i) \frac{\partial m_x(x_i,t)}{\partial x_i} + \frac{\eta^2}{2} \frac{\partial^2 m_x(x_i,t)}{\partial x_i^2}. \end{aligned} $$
(55)

The stationary case gives

$$ 0= \frac{1}{2} m_x(x_i) - \frac{1}{2} ( \mu_x - x_i) \frac{\partial m_x(x_i)}{\partial x_i} + \frac{\eta^2}{2} \frac{\partial^2 m_x(x_i)}{\partial x_i^2}. $$
(56)

One can check that \(\hat{m}_{x}(x_{i}) = \frac{1}{\eta\sqrt{2 \pi}} e^{-\frac{(x_{i} - \mu_{x})^{2}}{2 \eta^{2}}}\) is a solution of (56). This is the stationary density of x i . The analogous can also be written for y i : \(\hat{m}_{y}(y_{i}) = \frac{1}{\eta\sqrt{2 \pi}} e^{-\frac{(y_{i} - \mu_{y})^{2}}{2 \eta^{2}}}\).

Appendix B: Proof of Proposition 4

The proof follows the same principle as in chapter Risk-sensitive mean-field games in the notes Mean-field stochastic games by Tembine. Only the sketch of the proof is given here. To prove the uniqueness of the solution, we suppose that there exists two solutions (v 1,t ,m 1,t ),(v 2,t ,m 2,t ) of the above system. We want to find a sufficient condition under which the quantity \(\int_{\underline{s}} (v_{2,t}(\underline{s})-v_{1,t}(\underline {s}))(m_{2,t}(\underline{s})-m_{1,t}(\underline{s}))\,\text {d}\underline{s}\) is monotone in time, which is not possible.

$$ \left \{ \begin{array}{cc} m_{1,T}(\underline{s}) = m_{2,T}(\underline{s}), \\\noalign{\vspace{2pt}} v_{1,T'}(\underline{s}) = v_{2,T'}(\underline{s}). \end{array} \right . $$
(57)

Compute the time derivative

$$ \begin{aligned}[b] S_t =& \frac{\text{d}}{\text{d}t} \biggl(\int _{\underline{s}} \bigl(v_{2,t}(\underline {s})-v_{1,t}( \underline{s})\bigr) \bigl(m_{2,t}(\underline {s})-m_{1,t}( \underline{s})\bigr)\,\text{d}\underline{s} \biggr), \\ =& \int_{\underline{s}} \biggl(\frac{\partial{v_{2,t}}}{\partial t} (\underline{s})- \frac{\partial{v_{1,t}}}{\partial t} (\underline {s})\biggr) \bigl(m_{2,t}( \underline{s})-m_{1,t}(\underline{s})\bigr)\,\text {d}\underline{s}, \\ &+ \int_{\underline{s}} \bigl(v_{2,t}(\underline{s})-v_{1,t}( \underline {s})\bigr) \biggl(\frac{\partial{m_{2,t}}}{\partial t}(\underline{s})-\frac {\partial{m_{1,t}}}{\partial t}( \underline{s})\biggr)\,\text{d}\underline{s}. \end{aligned} $$
(58)

To express the first term, the difference between the two HJBF equations is taken and multiplied by m 2,t m 1,t :

$$ \begin{aligned} [b]&\int_{\underline{s}} \biggl( \frac{\partial{v_{2,t}}}{\partial t}-\frac {\partial{v_{1,t}}}{\partial t}\biggr) (m_{2,t}-m_{1,t})\, \text{d}\underline {s} \\ &\quad =\int_{\underline{s}}\tilde{H}\biggl(\underline{s}(t), \frac{\partial v_{1,t}}{\partial E},m_{1,t}\biggr) (m_{2,t} - m_{1,t})\, \text{d}\underline {s} - \int_{\underline{s}}\tilde{H}\biggl( \underline{s}(t),\frac {\partial v_{2,t}}{\partial E},m_{2,t}\biggr) (m_{2,t} - m_{1,t})\,\text {d}\underline{s} \\ &\qquad {}+ \int_{\underline{s}}\frac{\eta^2}{2} \frac{\partial^2 v_{1,t}}{\partial h^2}(m_{2,t} - m_{1,t})\, \text{d}\underline{s} - \int_{\underline{s}} \frac{\eta^2}{2} \frac{\partial^2 v_{2,t}}{\partial h^2}(m_{2,t} - m_{1,t})\,\text{d} \underline{s} \\ &\qquad {}+ \frac{1}{2} \int_{\underline{s}} \bigl\langle\underline{\mu}-\underline {h}(t), \nabla_{\underline{h}}v_{1,t} \bigr\rangle_{\mathbb {R}^2}(m_{2,t} - m_{1,t}) \,\text{d}\underline{s} - \frac{1}{2} \int_{\underline{s}} \bigl\langle\underline{\mu}-\underline{h}(t), \nabla_{\underline{h}}v_{2,t} \bigr\rangle_{\mathbb{R}^2}(m_{2,t} - m_{1,t})\, \text{d} \underline{s}. \end{aligned} $$
(59)

For the second term, the difference between the two FPK equations is taken and multiplied by v 2,t v 1,t :

$$ \begin{aligned}[b] &\int_{\underline{s}} \biggl( \frac{\partial{m_{2,t}}}{\partial t} - \frac {\partial{m_{1,t}}}{\partial t}\biggr) (v_{2,t}-v_{1,t})\, \text{d}\underline {s} \\ &\quad =-\int_{\underline{s}}\frac{\partial}{\partial E}\biggl(m_{2,t} \frac {\partial}{\partial u'} \tilde{H}\biggl(\underline{s}(t),\frac{\partial v_{2,t}}{\partial E},m_{2,t} \biggr)\biggr) (v_{2,t}-v_{1,t})\,\text{d}\underline{s} \\ &\qquad {}+\int_{\underline{s}} \frac{\partial}{\partial E}\biggl(m_{1,t} \frac {\partial}{\partial u'} \tilde{H}\biggl(\underline{s}(t),\frac{\partial v_{1,t}}{\partial E},m_{1,t} \biggr)\biggr) (v_{2,t}-v_{1,t})\,\text{d}\underline{s} \\ &\qquad {}+\int_{\underline{s}} \frac{\eta^2}{2} \frac{\partial^2 m_{2,t}}{\partial h^2} (v_{2,t}-v_{1,t})\,\text{d}\underline{s}-\int _{\underline{s}} \frac{\eta^2}{2} \frac{\partial^2 m_{1,t}}{\partial h^2}(v_{2,t}-v_{1,t})\, \text{d}\underline{s} \\ &\qquad {}+\frac{1}{2} \int_{\underline{s}} \operatorname{div}_{\underline {h}}\bigl(m_{2,t} \bigl(\underline{\mu}-\underline{h}(t)\bigr)\bigr) (v_{2,t}-v_{1,t})\, \text{d}\underline{s} \\ &\qquad {}-\frac{1}{2} \int_{\underline{s}} \operatorname{div}_{\underline{h}} \bigl(m_{1,t}\bigl(\underline{\mu}-\underline{h}(t)\bigr)\bigr) (v_{2,t}-v_{1,t})\, \text{d}\underline{s} . \end{aligned} $$
(60)

By integration by parts

$$ \int_{\underline{s}} \operatorname{div}_{\underline{s}}(k) \phi\,\text{d}\underline {s} = - \int_{\underline{s}} k \operatorname{div}_{\underline{s}}(\phi)\,\text {d} \underline{s}, $$
(61)

then

(62)

The full derivative writes

(63)

We now introduce

$$ m_{\lambda,t} = (1-\lambda)m_{1,t}+\lambda m_{2,t}=m_{1,t} + \lambda (m_{2,t}-m_{1,t}), $$
(64)

and in the same way

$$ v_{\lambda,t} = (1-\lambda)v_{1,t}+\lambda v_{2,t}. $$
(65)

We study the auxiliary integral

(66)

which derivative is

$$ \begin{aligned}[b] \frac{d}{d\lambda} \biggl(\frac{C_{\lambda}}{\lambda} \biggr) &= - \int_{\underline{s}}\frac{\partial}{\partial m} \tilde {H}\biggl({ \underline{s}}(t),\frac{\partial v_{\lambda,t}}{\partial E},m_{\lambda,t}\biggr) (m_{2,t} - m_{1,t})^2 \,\text{d}\underline{s} \\ &\quad {}+\int_{\underline{s}} m_{\lambda,t} \frac{\partial^2}{\partial u'^2} \tilde{H} \biggl({\underline{s}}(t),\frac{\partial v_{\lambda ,t}}{\partial E},m_{\lambda,t}\biggr) \biggl( \frac{\partial v_{2,t}}{\partial E}-\frac{\partial v_{1,t}}{\partial E}\biggr)^2\,\text{d}\underline{s} \\ &\quad {}+\int_{\underline{s}} m_{\lambda,t} \frac{\partial^2}{\partial m \partial u'} \tilde{H} \biggl({\underline{s}}(t),\frac{\partial v_{\lambda ,t}}{\partial E},m_{\lambda,t}\biggr) (m_{2,t}-m_{1,t}) \biggl(\frac{\partial v_{2,t}}{\partial E}-\frac{\partial v_{1,t}}{\partial E} \biggr)\,\text {d}\underline{s}. \end{aligned} $$
(67)

Note that \(\frac{\partial}{\partial m} \tilde{H}(\cdot)\) and \(\frac {\partial^{2}}{\partial m \partial u'} \tilde{H}(\cdot)\) are functional derivatives. They are defined such that for all m′∈ℙ(ℝ3)

$$ \begin{aligned}[b] &\biggl\langle\frac{\partial}{\partial m} \tilde{H}\biggl({ \underline {s}}(t),\frac{\partial v_{\lambda,t}}{\partial E},m_{\lambda,t}\biggr), m'-m_{\lambda,t} \biggr\rangle_{\mathbb{P}(\mathbb{R}^3)} \\ &\quad =\lim_{t\to0} \frac{\tilde{H}({\underline{s}}(t),\frac{\partial v_{\lambda,t}}{\partial E},m_{\lambda,t}+t(m'-m_{\lambda,t})) - \tilde{H}({\underline{s}}(t),\frac{\partial v_{\lambda,t}}{\partial E},m_{\lambda,t})}{t}, \end{aligned} $$
(68)

and

$$ \begin{aligned}[b] &\biggl\langle\frac{\partial^2}{\partial m \partial u'} \tilde {H}\biggl({ \underline{s}}(t),\frac{\partial v_{\lambda,t}}{\partial E},m_{\lambda,t}\biggr), m'-m_{\lambda,t} \biggr\rangle_{\mathbb{P}(\mathbb {R}^3)} \\ &\quad =\lim_{t\to0} \frac{\frac{\partial\tilde{H}}{\partial u'}({\underline{s}}(t),\frac{\partial v_{\lambda,t}}{\partial E},m_{\lambda,t}+t(m'-m_{\lambda,t})) - \frac{\partial\tilde {H}}{\partial u'}({\underline{s}}(t),\frac{\partial v_{\lambda ,t}}{\partial E},m_{\lambda,t})}{t}. \end{aligned} $$
(69)

A sufficient condition for the uniqueness of the solution to the mean-field response problem is the monotonicity of the operator associated to

$$\left ( \begin{array}{c@{\quad}c} A_{11} & A_{12} \\ A_{21} & a_{22} \end{array} \right ) $$

with

$$ \begin{aligned} A_{11} &= -\frac{1}{m} \frac{\partial}{\partial m} \tilde{H}, \\ A_{12} &= A_{21}=\frac{1}{2} \frac{\partial^2}{\partial m \partial u'} \tilde{H}, \\ a_{22} &= \frac{\partial^2}{\partial u'^2} \tilde{H}. \end{aligned} $$
(70)

This is true if

$$ \begin{aligned} &A_{11} \succ0, \qquad a_{22} > 0, \\ &A_{12} - \frac{A_{12}^2}{a_{22}} \succ0. \end{aligned} $$
(71)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mériaux, F., Lasaulce, S. & Tembine, H. Stochastic Differential Games and Energy-Efficient Power Control. Dyn Games Appl 3, 3–23 (2013). https://doi.org/10.1007/s13235-012-0068-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-012-0068-1

Keywords

Navigation