Skip to main content
Log in

The degradation of synthetic rubber surfaces by the adsorption of biofilms

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Biofilms are said to feed on oil contents found in synthetic rubber compounds used in sealing, pipeline and water separation valve applications but the extent of the degradation is not known. This work provides a way of characterizing the microscopic degradation as a result of the microbial adsorption on the rubber compound surfaces. Pseudomonas aeruginosa bacteria were grown on ethylene propylene diene monomer (EPDM) rubber compounds having increasing oil amounts. Results revealed that the microorganisms adhered and fed more on the oil-rich surfaces than those with less oil or oil-less surfaces and promoted smooth morphologies with reduced surface roughness values. Furthermore, elongation at break results from tensile test measurement showed an increase in stiffness with increasing oil amount after the bacteria degradation. This work supports rubber engineers when selecting rubber compounds for water contact applications.

Graphical abstract

Bacteria degradation at the rubber surfaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Mandlekar, M. Joshi, B.S. Butola, Adv. Ind. Eng. Polym. Res. 5, 33 (2022)

    Google Scholar 

  2. C. Darko, J. Polym. Res. 29, 325 (2022)

    Article  CAS  Google Scholar 

  3. N. Garrotede Barros, F.L. Silva Freitas, T. Sanches Valera, Express Polym. Lett. 16, 25 (2022)

    Google Scholar 

  4. X. Zhang, J. Li, Z. Chen, C. Pang, S. He, J. Lin, Polymers 14, 1205 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H. Mahmood, F. Nart, A. Pegoretti, J. Vinyl Add. Tech. 28, 494 (2022)

    Article  CAS  Google Scholar 

  6. M. Rahman, C.S. Brazel, Prog. Polym. Sci. 29, 1223 (2004)

    Article  CAS  Google Scholar 

  7. Z. Wang, Y. Han, X. Zhang, Z. Huang, L. Zhang, J. Appl. Polym. Sci. 130, 4457 (2013)

    Article  CAS  Google Scholar 

  8. J. Oh, Y.H. Yoo, I.S. Yoo, Y.I. Huh, T.K. Chaki, C. Nah, J. Appl. Polym. Sci. 131, 25 (2014)

    Article  Google Scholar 

  9. I. Chattopadhyay, Biocatal. Agric. Biotechnol. 39, 102263 (2022)

    Article  CAS  Google Scholar 

  10. H. Luo, C. Liu, D. He, J. Xu, J. Sun, J. Li, X. Pan, J. Hazard. Mater. 423, 126915 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. M.M. Yakimov, K.N. Timmis, P.N. Golyshin, Curr. Opin. Biotechnol. 18, 257 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. K. Poole, Front. Microbiol. 2, 65 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M.M. Moritz, H.C. Flemming, J. Wingender, Int. J. Hyg. Environ. Health 213, 190 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. G. Moore, D. Stevenson, K.A. Thompson, S. Parks, D. Ngabo, A.M. Bennett, J.T. Walker, Biofouling 31, 677 (2015)

    Article  PubMed  Google Scholar 

  15. H.C. Flemming, S.L. Percival, J.T. Walker, Water Sci. Technol. Water Supply 2, 271 (2002)

    Article  CAS  Google Scholar 

  16. I. Douterelo, J.B. Boxall, P. Deines, R. Sekar, K.E. Fish, C.A. Biggs, Water Res. 65, 134 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. J.S. Guasto, R. Rusconi, R. Stocker, Annu. Rev. Fluid Mech. 44, 373 (2012)

    Article  Google Scholar 

  18. H. Kanematsu, D.M. Barry, Biofilm and Materials Science (Springer, Berlin, 2015)

    Book  Google Scholar 

  19. I.B. Beech, C.C. Gaylarde, Int. Biodeterior. 27, 95 (1991)

    Article  CAS  Google Scholar 

  20. C. Staudt, H. Horn, D.C. Hempel, T.R. Neu, Biotechnol. Bioeng. 88, 585 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. M.E. Cortés, J.C. Bonilla, R.D. Sinisterra, Sci. Against Microbial. Pathog. Commun. Curr. Res. Technol. Adv. 2, 896 (2011)

    Google Scholar 

  22. M. Kostakioti, M. Hadjifrangisko, S.J. Hultgren, Cold Spring Harb. Perspect. Med. 3, a010306 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  23. A.B. Habieb, G. Milani, F. Milani, R. Cerchiaro, AIP Conf. Proc. AIP Publ. LLC 2343, 080013 (2021)

    Article  CAS  Google Scholar 

  24. N.B. Sanches, S. Navarro, M.F. Diniz, R.D.C.L. Dutra, Polímeros 24, 269 (2014)

    Article  Google Scholar 

  25. A. Makhongoana, B.J. Matsoso, T.H. Mongwe, N.J. Coville, D. Wamwangi, M.S. Maubane-Nkadimeng, Nanotechnology 32, 135603 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. K. Sauer, A.K. Camper, G.D. Ehrlich, J.W. Costerton, D.G. Davies, J.Bacteriol. 1140, 25 (2002)

    Google Scholar 

  27. J.R. Davis (ed.), Tensile Testing (ASM International, Geauga, 2004)

    Google Scholar 

  28. J.C. Barreto, D.L. Tita, M.O. Orlandi, Quim. Nova 42, 447 (2019)

    CAS  Google Scholar 

  29. D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger, Nano Lett. 7, 738 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. M.P. Nikiforov, V.V. Reukov, G.L. Thompson, A.A. Vertegel, S. Guo, S.V. Kalinin, S. Jesse, Nanotechnology 20, 405708 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. I. Horcas, R. Fernández, J.M. Gomez-Rodriguez, J.W.S.X. Colchero, J.W.S.X.M. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. S.J. Fang, S. Haplepete, W. Chen, C.R. Helms, H. Edwards, J. Appl. Phys. 82, 5891 (1997)

    Article  CAS  Google Scholar 

  33. L.M. Smith, C.C. Dobson, Appl. Opt. 28, 3339 (1989)

    Article  CAS  PubMed  Google Scholar 

  34. E.H. Immergut, H.F. Mark, Principles of Plasticization (1965).

  35. Z. Filip, S. Hermann, Eur. J. Soil Biol. 37, 137 (2001)

    Article  CAS  Google Scholar 

  36. M. Burelo, S. Gutiérrez, C.D. Treviño-Quintanilla, J.A. Cruz-Morales, A. Martínez, S. López-Morales, Polymers 14, 4973 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Burelo, I. Gaytán, H. Loza-Tavera, J.A. Cruz-Morales, D. Zárate-Saldaña, M.J. Cruz-Gómez, S. Gutiérrez, Chemosphere 307, 136136 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. B.H. Iglewski, In: Baron S (edn) Medical Microbiology. 4th edn. Galveston (TX), University of Texas Medical Branch at Galveston, Chapter 27 (1996).

  39. L.A. Pérez-Prieto, J.L. Peyraud, R. Delagarde, Livest. Sci. 137, 151 (2011)

    Article  Google Scholar 

  40. B.L. Wadey, Encyclop. Polym. Sci. Technol. 441, 25 (2003)

    Google Scholar 

  41. C. Gaylarde, A. Otlewska, S. Celikkol-Aydin, J. Skóra, M. Sulyok, K. Pielech-Przybylska, J. Gillatt, I. Beech, B. Gutarowska, Int. Biodeterior. Biodegrad. 104, 411 (2015)

    Article  Google Scholar 

  42. X. Xu, W. Liu, S. Tian, W. Wang, Q. Qi, P. Jiang, X. Gao, F. Li, H. Li, H. Yu, Front. Microbiol. 9, 2885 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  43. K. Sayed, L. Baloo, N.K. Sharma, Int. J. Environ. Res. Public Health 18, 2226 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K. Reincke, W. Grellmann, J. Friedel, Kautsch Gummi Kunstst 62, 506 (2009)

    Google Scholar 

  45. S.K. Liao, C.C. Hung, M.F. Lin, Macromol. Res. 12, 466 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors will like to thank Dr. Nigel Hodson at the Faculty of Biology, Medicine and Health, The University of Manchester for his support and assistance in the AFM measurements and all colleagues at the Division of Pharmacy and Optometry School of Health Sciences, The University of Manchester who supported the work.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Darko.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1769 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darko, C., Xin, B., Liu, J. et al. The degradation of synthetic rubber surfaces by the adsorption of biofilms. Macromol. Res. 31, 933–940 (2023). https://doi.org/10.1007/s13233-023-00180-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00180-3

Keywords

Navigation