Skip to main content
Log in

Effect of Surface Treatment on the Performance of Polyester Composite Filled with Waste Glove Rubber Crumbs

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work evaluates applicable rubber crumbs surface treatments to improve the rubber-polyester composite tensile strength. Generally, the addition of untreated rubber crumbs to composites resulted in strength loss because of weak adhesion between rubber and polyester. Rubber crumbs were prepared by grinding the waste gloves under cryogenic conditions. The crumbs were subjected to NaOH, H2SO4 and KMnO4 surface treatment and the composites were fabricated by adding the treated rubber to the unsaturated polyester. FTIR, SEM analysis and contact angle measurement were performed on the treated rubber crumbs. The composites were subjected to tensile test and the fracture surface were analyse using SEM. NaOH treatment improved hydrophilic properties of rubber crumbs and enhanced rubber-polyester interfacial adhesion, hence increasing the composite tensile strength by 2% from the untreated rubber. However, for H2SO4 and KMnO4 treatments the tensile strength decreased by 2% and 11% respectively. As hydrophilicity increased, the contact angle of the NaOH treated rubber surface decreased significantly by 30% compared to the untreated rubber surface. Rubber surface with better hydrophilic properties promotes better polyester wetting on the rubber thus enhancing the adhesion between rubber and polyester. The SEM analysis on the NaOH treated rubber reveals a rougher surface with numerous micropores and microcracks that allow the polyester to penetrate into the irregularities of the rubber surface thus induces better adhesion between the two. The FTIR analysis indicates more polar functional groups and soluble elements on the treated rubber surface. These groups initiate more linkages with polyester polar groups, enhancing interfacial adhesion. NaOH also removed the additives passive layer on the rubber surface, hence allowing better polyester coverage. Therefore, the NaOH treatment of waste rubber crumbs improves adhesion between rubber and polyester, which increases the tensile strength of the composite.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nuzaimah, M., Sapuan, S.M., Nadlene, R., Jawaid, M.: Microstructure and mechanical properties of unsaturated polyester composites filled with waste rubber glove crumbs. Fibers Polym. 20, 1290–1300 (2019). https://doi.org/10.1007/s12221-019-8887-y

    Article  Google Scholar 

  2. Nuzaimah, M., Sapuan, S.M., Nadlene, R., Jawaid, M.: Recycling of waste rubber as fillers: a review. IOP Conf. Ser. 368, 012016 (2018). https://doi.org/10.1088/1757-899X/368/1/012016

    Article  Google Scholar 

  3. Wang, J., Zhao, H.: Thermogravimetric analysis of rubber glove pyrolysis by different iso-conversional methods. Waste Biomass Valoriz. 6, 527–533 (2015). https://doi.org/10.1007/s12649-015-9372-5

    Article  Google Scholar 

  4. Mathew, G., Nah, C., Rhee, J.M.: Multifiller-matrix adhesion effects in epoxidized natural rubber. J. Elastomers Plast. 38, 43–63 (2006). https://doi.org/10.1177/0095244306055414

    Article  Google Scholar 

  5. Jose, J.P., Abraham, J., Maria, H.J., Varughese, K.T., Thomas, S.: Contact angle studies in XLPE hybrid nanocomposites with inorganic nanofillers. Macromol. Symposia 366, 66–78 (2016). https://doi.org/10.1002/masy.201650048

    Article  Google Scholar 

  6. Imbernon, L., Norvez, S.: From landfilling to vitrimer chemistry in rubber life cycle. Eur. Polymer J. 82, 347–376 (2015). https://doi.org/10.1016/j.eurpolymj.2016.03.016

    Article  Google Scholar 

  7. Torretta, V., Rada, E.C., Ragazzi, M., Trulli, E., Istrate, I.A., Cioca, L.I.: Treatment and disposal of tyres: two EU approaches. A review. Waste Manag. 45, 152–160 (2015). https://doi.org/10.1016/j.wasman.2015.04.018

    Article  Google Scholar 

  8. Ciccu, R., Costa, G.: Recycling of secondary raw materials from end-of-life car tires. WIT Trans. Ecol. Environ. 155, 1115–1126 (2012)

    Article  Google Scholar 

  9. Ghasemi, F.A., Payganeh, G., Rahmani, M., Kalaee, M.R.: Investigating the effects of waste ground rubber tire. Digest J. Nanomater. Biostruct. 7, 1859–1868 (2012)

    Google Scholar 

  10. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., Balas, A.: Progress in used tyres management in the European Union: a review. Waste Manag. 32, 1742–1751 (2012). https://doi.org/10.1016/j.wasman.2012.05.010

    Article  Google Scholar 

  11. Rajan, V.V., Dierkes, W.K., Joseph, R., Noordermeer, J.W.M.: Science and technology of rubber reclamation with special attention to NR-based waste latex products. Prog. Polym. Sci. 31, 811–834 (2006). https://doi.org/10.1016/j.progpolymsci.2006.08.003

    Article  Google Scholar 

  12. Kashani, A., Ngo, T.D., Hemachandra, P., Hajimohammadi, A.: Effects of surface treatments of recycled tyre crumb on cement-rubber bonding in concrete composite foam. Constr. Build. Mater. 171, 467–473 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.163

    Article  Google Scholar 

  13. Guo, S., Dai, Q., Si, R., Sun, X., Lu, C.: Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. J. Clean. Prod. 148, 681–689 (2017). https://doi.org/10.1016/j.jclepro.2017.02.046

    Article  Google Scholar 

  14. Liu, H., Wang, X., Jiao, Y., Sha, T.: Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials. 9, 1–12 (2016). https://doi.org/10.3390/ma9030172

    Article  Google Scholar 

  15. Huang, B., Shu, X., Cao, J.: A two-staged surface treatment to improve properties of rubber modified cement composites. Constr. Build. Mater. 40, 270–274 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.014

    Article  Google Scholar 

  16. De, S.K., Isayev, A., Khait, K.: Rubber Recycling, 1st edn. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  17. Cepeda-Jiménez, C.M., Pastor-blas, M.M., Ferrándiz-Gómez, T.P., Martín-Martínez, J.M.: Surface characterization of vulcanized rubber treated with sulfuric acid and its adhesion to polyurethane adhesive. J. Adhes. 73, 135–160 (2000). https://doi.org/10.1080/00218460008029303

    Article  Google Scholar 

  18. Ayyer, R., Rosenmayer, T., Schreiber, W., Colton, J.: Effects of micronized rubber powders on structure and properties of polypropylene composites. Waste Biomass Valoriz. 4, 65–71 (2013). https://doi.org/10.1007/s12649-012-9166-y

    Article  Google Scholar 

  19. Isobe, S., Sakamoto, T.: Glove, U.S. Patent Application No. 15/828,821 (2018)

  20. Akabane, T.: Production method & market trend of rubber gloves. Int. Polym. Sci. Technol. 43, 369–373 (2016)

    Google Scholar 

  21. Nocil Limited, Natural Rubber Latex & Latex Products, Technical report (2010). https://www.nocil.com/Downloadfile/GTechnicalNote-LatexTechnology-Dec2010.pdf

  22. Abu Hassan, N., Lucas, D.M., Nuzaimah, M.: Polymer composite fibrous coating on dipped rubber articles and method. U.S. Patent No. 7037579 (2006)

  23. Janssen, R.A., Shamis, M.S., Conley, W.E., White, S.E.: Method of forming a low tack elastomeric article. U.S. Patent Application 10/454,703

  24. Azammi, A.N., Sapuan, S.M., Ishak, M.R., Sultan, M.T.H.: Mechanical and thermal properties of kenaf reinforced thermoplastic polyurethane (TPU)-natural rubber (NR) composites. Fibers Polym. 19, 446–451 (2018). https://doi.org/10.1007/s12221-018-7737-7

    Article  Google Scholar 

  25. Mathew, G., Singh, R., Nair, N., Thomas, S.: Recycling of natural rubber latex waste and its interaction in epoxidised natural rubber. Polymer 42, 2137–2165 (2001). https://doi.org/10.1016/S0032-3861(00)00492-4

    Article  Google Scholar 

  26. Adams, R.D.: Adhesive Bonding: Science, Technology and Applications, 1st edn. Woodhead Publishing Limited, Cambridge (2005). https://doi.org/10.1201/b10386

    Book  Google Scholar 

  27. Kakroodi, A.R., Rodrigue, D.: Degradation behavior of maleated polyethylene/ground tire rubber thermoplastic elastomers with and without stabilizers. Polym. Degrad. Stab. 98, 2184–2192 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.08.017

    Article  Google Scholar 

  28. Sapuan, S.M.: Composite materials. In: Composite Materials Concurrent Engineering Approach, 1st ed. Butterworth-Heinemann, Oxford, pp. 57–93. https://doi.org/10.1016/B978-0-12-802507-9/00003-9 (2017)

  29. Abu-Jdayil, B., Mourad, A.H., Hussain, A.: Thermal and physical characteristics of polyester-scrap tire composites. Constr. Build. Mater. 105, 472–479 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.180

    Article  Google Scholar 

  30. Sienkiewicz, M., Janik, H., Borzędowska-Labuda, K., Kucińska-Lipka, J.: Environmentally friendly polymer-rubber composites obtained from waste tyres: a review. J. Clean. Prod. 147, 560–571 (2017). https://doi.org/10.1016/j.jclepro.2017.01.121

    Article  Google Scholar 

  31. Ramarad, S., Khalid, M., Ratnam, C.T., Chuah, A.L., Rashmi, W.: Waste tire rubber in polymer blends: a review on the evolution, properties and future. Prog. Mater Sci. 72, 100–140 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.004

    Article  Google Scholar 

  32. Karger-Kocsis, J., Mészáros, L., Bárány, T.: Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. J. Mater. Sci. 48, 1–38 (2013). https://doi.org/10.1007/s10853-012-6564-2

    Article  Google Scholar 

  33. Elenien, K.F.A., Abdel-Wahab, A., ElGamsy, R., Abdellatif, M.H.: Assessment of the properties of PP composite with addition of recycled tire rubber. Ain Shams Eng. J. 9, 3271–3276 (2018). https://doi.org/10.1016/j.asej.2018.05.001

    Article  Google Scholar 

  34. Yehia, A., Abdelbary, E.M., Mull, M., Ismail, M.N., Hefny, Y.: New trends for utilization of rubber wastes. Macromol. Symposia. 320, 5–14 (2012). https://doi.org/10.1002/masy.201251001

    Article  Google Scholar 

  35. Colom, X., Carrillo, F., Cañavate, J.: Composites reinforced with reused tyres: surface oxidant treatment to improve the interfacial compatibility. Composites Part A 38, 44–50 (2007). https://doi.org/10.1016/j.compositesa.2006.01.022

    Article  Google Scholar 

  36. Chen, Z., Pei, J., Wang, T., Amirkhanian, S.: High temperature rheological characteristics of activated crumb rubber modified asphalts. Constr. Build. Mater. 194, 122–131 (2019). https://doi.org/10.1016/j.conbuildmat.2018.10.223

    Article  Google Scholar 

  37. Francis, R.: Recycling of Polymers: Methods, Characterization and Applications, 1st edn. Wiley, Weinheim (2016). https://doi.org/10.1002/9783527689002.ch5

    Book  Google Scholar 

  38. Wang, Z., Kang, Y., Wang, Z.: Pulverization of end-of-life tires by ultra-high pressure water jet process. J. Polym. Eng. 37, 211–225 (2016). https://doi.org/10.1515/polyeng-2015-0534

    Article  Google Scholar 

  39. Ossola, G., Wojcik, A.: UV modification of tire rubber for use in cementitious composites. Cement Concr. Compos. 52, 34–41 (2014). https://doi.org/10.1016/j.cemconcomp.2014.04.004

    Article  Google Scholar 

  40. Medina, N.F., Garcia, R., Hajirasouliha, I., Pilakoutas, K., Guadagnini, M., Raffoul, S.: Composites with recycled rubber aggregates: properties and opportunities in construction. Constr. Build. Mater. 188, 884–897 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.069

    Article  Google Scholar 

  41. Sonnier, R., Leroy, E., Clerc, L., Bergeret, A., Lopez-Cuesta, J.M.: Polyethylene/ground tyre rubber blends: influence of particle morphology and oxidation on mechanical properties. Polym. Test. 26, 274–281 (2007). https://doi.org/10.1016/j.polymertesting.2006.10.011

    Article  Google Scholar 

  42. Presti, D.L.: Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr. Build. Mater. 49, 863–881 (2013). https://doi.org/10.1016/j.conbuildmat.2013.09.007

    Article  Google Scholar 

  43. Zhang, X., Zhu, X., Liang, M.: Improvement of the properties of ground tire rubber (GTR)-filled nitrile rubber vulcanizates through plasma surface modification of GTR powder. J. Appl. Polym. Sci. 114, 1118–1125 (2009). https://doi.org/10.1002/app

    Article  Google Scholar 

  44. Awaja, F., Gilbert, M., Kelly, G., Fox, B., Pigram, P.J.: Adhesion of polymers. Prog. Polym. Sci. 34, 948–968 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.007

    Article  Google Scholar 

  45. Si, R., Guo, S., Dai, Q.: Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles. Constr. Build. Mater. 153, 496–505 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.085

    Article  Google Scholar 

  46. Noor Azammi, M.A., Sapuan, S.M., Ishak, M.R., Sultan, M.T.H.: Mechanical properties of kenaf fiber thermoplastic polyurethane-natural rubber composites. Polimery/Polymers. 63, 524–530 (2018). https://doi.org/10.14314/polimery.2018.7.6

    Article  Google Scholar 

  47. Nadlene, R., Sapuan, S., Jawaid, M., Ishak, M.R., Yusriah, L.: The effects of chemical treatment on the structural and thermal, physical, and mechanical and morphological properties of roselle fiber-reinforced vinyl ester composites. Polym. Compos. 39, 274–287 (2018). https://doi.org/10.1002/pc.23927

    Article  Google Scholar 

  48. Segre, N., Joekes, I.: Use of tire rubber particles as addition to cement paste. Cem. Concr. Res. 30, 1421–1425 (2000). https://doi.org/10.1016/S0008-8846(00)00373-2

    Article  Google Scholar 

  49. Chou, L.H., Lu, C.-K., Chang, J.-R., Lee, M.T.: Use of waste rubber as concrete additive. Waste Manage. Res. 25, 68–76 (2007). https://doi.org/10.1177/0734242X07067448

    Article  Google Scholar 

  50. Safan, M., Eid, F.M., Awad, M.: Enhanced properties of crumb rubber and its application in rubberized concrete. Int. J. Curr. Eng. Technol. 7, 1784–1790 (2017)

    Google Scholar 

  51. Mark, J.E., Erman, B.: The Science and Technology of Rubber, 4th edn. Academic Press, Oxford (2013)

    Google Scholar 

  52. Segre, N., Monteiro, P.J.M., Sposito, G.: Surface characterization of recycled tire rubber to be used in cement paste matrix. J. Colloid Interface Sci. 248, 521–523 (2002). https://doi.org/10.1006/jcis.2002.8217

    Article  Google Scholar 

  53. Zhang, Z.Y., Niu, H.J., Zhang, J.J., Cui, Y.Y.: Influence of the treatment with sulfuric acid on adhesion of natural rubber and cast polyurethane elastomers. Adv. Mater. Res. 452–453, 86–90 (2012). https://doi.org/10.4028/www.scientific.net/amr.452-453.86

    Article  Google Scholar 

  54. Colom, J.J.S.X., Canavate, J., Carrillo, F.: Effect of the particle size and acid pretreatments on compatibility and properties of recycled HDPE plastic bottles filled with ground tyre powder. J. Appl. Polym. Sci. 112, 1882–1890 (2008). https://doi.org/10.1002/app

    Article  Google Scholar 

  55. Saha, P., Colom, X., Haponiuk, J.T., John, M., Naskar, K., Thomas, S., Clark, J.H.: Rubber Recycling: Challenges and Developments, Royal Society of Chemistry, Croydon (2018). https://doi.org/10.1039/9781788013482

  56. He, L., Ma, Y., Liu, Q., Mu, Y.: Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete. Constr. Build. Mater. 120, 403–407 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.025

    Article  Google Scholar 

  57. Li, W., Meng, L., Ma, R.: Effect of surface treatment with potassium permanganate on ultra-high molecular weight polyethylene fiber reinforced natural rubber composites. Polym. Test. 55, 10–16 (2016). https://doi.org/10.1016/j.polymertesting.2016.08.006

    Article  Google Scholar 

  58. McCannon, M.T., Sweitzer, K.J.: Chemical Modification of Crumb Rubber to Increase Its Bonding with Concrete, , Honors Research Projects 550, Williams Honors College (2017). https://ideaexchange.uakron.edu/honors_research_projects/550

  59. Wu, D.Y., Bateman, S., Partlett, M.: Ground rubber/acrylonitrile-butadiene-styrene composites. Compos. Sci. Technol. 67, 1909–1919 (2007). https://doi.org/10.1016/j.compscitech.2006.10.012

    Article  Google Scholar 

  60. Kaynak, C., Celikbilek, C., Akovali, G.: Use of silane coupling agents to improve epoxy-rubber interface. Eur. Polymer J. 39, 1125–1132 (2003). https://doi.org/10.1016/S0014-3057(02)00381-6

    Article  Google Scholar 

  61. Adhikari, B., De, D., Maiti, S.: Reclamation and recycling of waste rubber. Prog. Polym. Sci. 25, 909–948 (2000). https://doi.org/10.1016/S0079-6700(00)00020-4

    Article  Google Scholar 

  62. ASTM D5083: Standard Test Method for Tensile Properties of Reinforced Thermosetting Plastics Using Straight-Sided Specimens, pp. 1–7. ASTM International, West Conshohocken (2017). https://doi.org/10.1520/D5083-17

    Book  Google Scholar 

  63. Chen, S.F., Wang, S., Wong, W.C., Chong, C.S.: Glove coating and manufacturing process, U.S. Patent Application 15/409,983, (2017). https://doi.org/10.1037/t24245-000

  64. Meleth, J.P.: An Introduction to Latex Gloves, 1st edn. Lambert Academic Publishing, Deutschland (2012)

    Google Scholar 

  65. Hassan, N.A., Yuen, C.C.: Powder-free medical gloves, US Patent No. 6,378,137 (2002)

  66. Medina, N.F., Medina, D.F., Hernández-Olivares, F., Navacerrada, M.A.: Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Constr. Build. Mater. 144, 563–573 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.196

    Article  Google Scholar 

  67. Xiaowei, C., Sheng, H., Xiaoyang, G., Wenhui, D.: Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement. Appl. Surf. Sci. 409, 325–342 (2017). https://doi.org/10.1016/j.apsusc.2017.03.072

    Article  Google Scholar 

  68. Colom, X., Faliq, A., Formela, K., Cañavate, J.: FTIR spectroscopic and thermogravimetric characterization of ground tyre rubber devulcanized by microwave treatment. Polym. Test. 52, 200–208 (2016). https://doi.org/10.1016/j.polymertesting.2016.04.020

    Article  Google Scholar 

  69. Rivas-Vázquez, L.P., Suárez-Orduña, R., Hernández-Torres, J., Aquino-Bolaños, E.: Effect of the surface treatment of recycled rubber on the mechanical strength of composite concrete/rubber. Mater. Struct. 48, 2809–2814 (2015). https://doi.org/10.1617/s11527-014-0355-y

    Article  Google Scholar 

  70. Moghaddamzadeh, S., Rodrigue, D.: The effect of polyester recycled tire fibers mixed with ground tire rubber on polyethylene composites part I. Prog. Rubber Plast. Recycl. Technol. 34, 200–220 (2018). https://doi.org/10.1177/1477760618798267

    Article  Google Scholar 

  71. Zanchet, A., Carli, L.N., Giovanela, M., Brandalise, R.N., Crespo, J.S.: Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application. Mater. Des. 39, 437–443 (2012). https://doi.org/10.1016/j.matdes.2012.03.014

    Article  Google Scholar 

  72. Carli, L.N., Bianchi, O., Mauler, R.S., Crespo, J.S.: Accelerated aging of elastomeric composites with vulcanized ground scraps. J. Appl. Polym. Sci. 123, 280–285 (2012). https://doi.org/10.1002/app.33666

    Article  Google Scholar 

  73. Hernández, E.H., Gámez, J.F.H., Cepeda, L.F., Muñoz, E.J.C., Corral, F.S., Rosales, S.G.S., Velázquez, G.N., Morones, P.G., Martínez, D.I.S.: Sulfuric acid treatment of ground tire rubber and its effect on the mechanical and thermal properties of polypropylene composites. J. Appl. Polym. Sci. 134, 1–7 (2017). https://doi.org/10.1002/app.44864

    Article  Google Scholar 

  74. Basak, G.C., Bandyopadhyay, A., Neogi, S., Bhowmick, A.K.: Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber. Appl. Surf. Sci. 257, 2891–2904 (2011). https://doi.org/10.1016/j.apsusc.2010.10.087

    Article  Google Scholar 

  75. Chen, C., Lee, M.: Application of crumb rubber in cement-matrix composite. Materials. 12, 529 (2019). https://doi.org/10.3390/ma12030529

    Article  Google Scholar 

  76. Pelisser, F., Zavarise, N., Longo, T.A., Bernardin, A.M.: Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition. J. Clean. Prod. 19, 757–763 (2011). https://doi.org/10.1016/j.jclepro.2010.11.014

    Article  Google Scholar 

  77. Youssf, O., Mills, J.E., Hassanli, R.: Assessment of the mechanical performance of crumb rubber concrete. Constr. Build. Mater. 125, 175–183 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.040

    Article  Google Scholar 

  78. Awaja, F.: Autohesion of polymers. Polymer 97, 387–407 (2016). https://doi.org/10.1016/j.polymer.2016.05.043

    Article  Google Scholar 

  79. Moghaddamzadeh, S., Rodrigue, D.: The effect of polyester recycled tire fibers mixed with ground tire rubber on polyethylene composites Part II. Prog. Rubber Plast. Recycl. Technol. 34, 128–142 (2018). https://doi.org/10.1177/1477760618798268

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Putra Malaysia for the financial support provided through the Putra Grant IPS (9607000). Acknowledgment goes to the Universiti Teknikal Malaysia Melaka and the Ministry of Education Malaysia for providing a scholarship to conduct this research project. Special thanks to the Institute of Tropical Forestry and Forest Products (INTROP), Department of Mechanical and Manufacturing Engineering and Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia for providing the necessary facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuzaimah, M., Sapuan, S.M., Nadlene, R. et al. Effect of Surface Treatment on the Performance of Polyester Composite Filled with Waste Glove Rubber Crumbs. Waste Biomass Valor 12, 1061–1074 (2021). https://doi.org/10.1007/s12649-020-01008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01008-2

Keywords

Navigation