Skip to main content
Log in

Tributylborane/p-quinone system: reversible and irreversible inhibition in the styrene polymerization

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polymerization of styrene with tributylborane in the presence of various p-quinones (2,3-dimethyl-1,4-benzoquinone, 1,4-naphthoquinone, menadione, duroquinone, 2,5-di-tert-butyl-1,4-benzoquinone) has been investigated. It was found that in spite of dual nature of p-quinone and the presence of tributylborane in the initial mixture, the semi-quinone macroradical is capable to “chain regeneration”. Neither solvent introduction nor use of a more reactive triethylborane affects this process. The insensitivity of this reaction to external conditions may be caused by the cell effect. For some p-quinones in the presence of tributylborane, the realization of reversible-deactivation radical polymerization is observed. Mechanism of the chain termination reactions was established by the MALDI-TOF technique. It consists of reversible inhibition causing the formation of active macromolecules as well as irreversible inhibition causing the formation of “dead” macromolecules. The ratio of these directions depends on the relative reactivity of p-quinone (kz/kp). The higher is kz/kp, the lower is the probability of irreversible inhibition. Polymers obtained in the presence of the tributylborane/p-quinone system can re-initiate polymerization. Post-polymers with distinct molecular weight characteristics (Đ = 1.12 – 1.19) were obtained during this synthesis. Only polystyrene macro-radicals are formed during polymerization re-initiation. This fact has been proven by ESR spectroscopy. The macroinitiator polymers isolated at the initial conversions have the same reactivity regardless of the p-quinone nature. The linear dependence of Mn with conversion, the polydispersity lessening, and the constant concentration of macro-radicals indicate realization of reversible-deactivation radical polymerization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Information is available regarding the borane synthesis, hydroquinone oxidation, MNP synthesis, MNQ reactivity determination, GPC data, MALDI-TOF mass spectra, FT-IR spectra, data on chain extension, and block copolymerization. The materials are available via the Internet at http://www.springer.com/

References

  1. R.B. Grubbs, R.H. Grubbs, Macromolecules 50, 6979 (2017). https://doi.org/10.1021/acs.macromol.7b01440

    Article  CAS  Google Scholar 

  2. D.J. Walsh, M.G. Hyatt, S.A. Miller, D. Guironnet, ACS Catal. 9, 11153 (2019). https://doi.org/10.1021/acscatal.9b03226

    Article  CAS  Google Scholar 

  3. C.J. Hawker, A.W. Bosman, E. Harth, Chem. Rev. 101, 3661 (2001). https://doi.org/10.1021/cr990119u

    Article  CAS  PubMed  Google Scholar 

  4. K. Matyjaszewski, J. Xia, Chem. Rev. 101, 2921 (2001). https://doi.org/10.1021/cr940534g

    Article  CAS  PubMed  Google Scholar 

  5. M. Ouchi, M. Sawamoto, Macromolecules 50, 2603 (2017). https://doi.org/10.1021/acs.macromol.6b02711

    Article  CAS  Google Scholar 

  6. S. Perrier, Macromolecules 50, 7433 (2017). https://doi.org/10.1021/acs.macromol.7b00767

    Article  CAS  Google Scholar 

  7. Y.-N. Zhou, J.-J. Li, T.-T. Wang, Y.-Y. Wu, Z.-H. Luo, Prog. Polym. Sci. 130, 101555 (2022). https://doi.org/10.1016/j.progpolymsci.2022.101555

    Article  CAS  Google Scholar 

  8. N. Corrigan, K. Jung, G. Moad, C.J. Hawker, K. Matyjaszewski, C. Boyer, Prog. Polym. Sci. 111, 101311 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101311

    Article  CAS  Google Scholar 

  9. R. Li, W. Kong, Z. An, Angew. Chem. Int. Ed. 61, e20220203 (2022). https://doi.org/10.1002/anie.202202033

    Article  CAS  Google Scholar 

  10. T.C.M. Chung, W. Janvikul, H.L. Lu, J. Am. Chem. Soc. 118, 705 (1996). https://doi.org/10.1021/ja9527737

    Article  CAS  Google Scholar 

  11. MYu. Zaremski, D.V. Budanov, S.A. Romanov, A.V. Plutalova, E.S. Garina, V.B. Golubev, Polym. Sci. Ser. B 53, 1 (2011). https://doi.org/10.1134/S1560090410101021

    Article  CAS  Google Scholar 

  12. MYu. Zaremski, E.S. Garina, M.E. Gurskii, Yu.N. Bubnov, Polym. Sci. Ser. B 55, 304 (2013). https://doi.org/10.1134/S1560090413050072

    Article  CAS  Google Scholar 

  13. MYu. Zaremskii, V.V. Odintsova, A.V. Plutalova, M.E. Gurskii, Yu.N. Bubnov, Polym. Sci. Ser. B 60, 162 (2018). https://doi.org/10.1134/S1560090418020082

    Article  CAS  Google Scholar 

  14. Y.-H. Fu, S.T. Madrahimov, D.E. Bergbreiter, J. Polym. Sci. Part A 56, 1860 (2018). https://doi.org/10.1002/pola.29069

    Article  CAS  Google Scholar 

  15. Z.-C. Zhang, T.C.M. Chung, Macromolecules 39, 5187 (2004). https://doi.org/10.1021/ma061393a

    Article  CAS  Google Scholar 

  16. W. Lin, J. Dong, T.C.M. Chung, Macromolecules 41, 8452 (2008). https://doi.org/10.1021/ma801469s

    Article  CAS  Google Scholar 

  17. N.L. Pegeev, L.L. Semenycheva, N.B. Valetova, Y.O. Matkivs’kaya, T.I. Liogonkaya, A.V. Mitin, Y.A. Kurskii, J. Organomet. Chem. 922, 121396 (2020). https://doi.org/10.1016/j.jorganchem.2020.121396

    Article  CAS  Google Scholar 

  18. Z.M. Wang, H. Hong, T.C. Chung, Macromolecules 38, 8966 (2005). https://doi.org/10.1021/ma0516182

    Article  CAS  Google Scholar 

  19. MYu. Zaremski, V.V. Odintsova, A.V. Bol’shakova, E.S. Garina, M.E. Gurskii, Yu.N. Bubnov, Polym. Sci. Ser. B 60, 436 (2018). https://doi.org/10.1134/S1560090418040127

    Article  CAS  Google Scholar 

  20. K. Kojima, M. Yoshikuri, T. Suzuki, J. Appl. Polym. Sci. 24, 1587 (1979). https://doi.org/10.1002/app.1979.070240701

    Article  CAS  Google Scholar 

  21. K. Kojima, S. Iwabuchi, K. Murahami, K. Kojima, F. Ichikawa, J. Appl. Polym. Sci. 16, 1139 (1972). https://doi.org/10.1002/app.1972.070160508

    Article  CAS  Google Scholar 

  22. Yu.L. Kuznetsova, K.S. Sustaeva, A.S. Vavilova, A.V. Markin, D.V. Lyakaev, A.V. Mitin, L.L. Semenycheva, J. Organomet. Chem. 924, 121431 (2020). https://doi.org/10.1016/j.jorganchem.2020.121431

    Article  CAS  Google Scholar 

  23. M. Okaguchi, T. Kuo, Y.-C. Ho, J. Formos. Med. Assoc. 118, 671 (2019). https://doi.org/10.1016/j.jfma.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  24. D. Ahn, K.A. Wier, T.P. Mitchell, P.A. Olney, A.C.S. Appl, Mater. Interfaces 43, 23902 (2015). https://doi.org/10.1021/acsami.5b05943

    Article  CAS  Google Scholar 

  25. M.F. Sonnenschein, S.P. Webb, P.E. Kastl, D.J. Arriola, B.L. Wendt, D.R. Harrington, Macromolecules 37, 7974 (2004). https://doi.org/10.1021/ma040095f

    Article  CAS  Google Scholar 

  26. C. Lv, C. He, X. Pan, Angew. Chem. Int. Ed. 57, 9430 (2018). https://doi.org/10.1002/anie.201805212

    Article  CAS  Google Scholar 

  27. C. Lv, Y. Du, X. Pan, J. Polym. Sci. 58, 14 (2020). https://doi.org/10.1002/pola.29477

    Article  CAS  Google Scholar 

  28. C. Lv, N. Li, Y.-X. Du, J.-H. Li, X.-C. Pan, Chin. J. Polym. Sci. 38, 1178 (2020). https://doi.org/10.1007/s10118-020-2441-7

    Article  CAS  Google Scholar 

  29. N. Li, X.-C. Pan, Chin. J. Polym. Sci. 39, 1084 (2021). https://doi.org/10.1007/s10118-021-2597-9

    Article  CAS  Google Scholar 

  30. Y. Wang, Q. Wang, X. Pan, Cell Rep. Phys. Sci. 1, 100073 (2020). https://doi.org/10.1016/j.xcrp.2020.100073

    Article  Google Scholar 

  31. O.R. Wilson, A.J.D. Magenau, ACS Macro Lett. 7, 370 (2018). https://doi.org/10.1021/acsmacrolett.8b00076

    Article  CAS  PubMed  Google Scholar 

  32. R.L. Timmins, O.R. Wilson, A.J.D. Magenau, J. Polym. Sci. 58, 1463 (2020). https://doi.org/10.1002/pol.20200089

    Article  CAS  Google Scholar 

  33. O.R. Wilson, R.M. McDaniel, A.D. Rivera, A.J.D. Magenau, A.C.S. Appl, Mater. Interfaces 49, 55262 (2020). https://doi.org/10.1021/acsami.0c16587

    Article  CAS  Google Scholar 

  34. P. Alagi, N. Hadjichristidis, Y. Gnanou, X. Feng, ACS Macro Lett. 8, 664 (2019). https://doi.org/10.1021/acsmacrolett.9b00357

    Article  CAS  PubMed  Google Scholar 

  35. N. Li, S. Yang, Z. Huang, X. Pan, Macromolecules 24, 6000 (2021). https://doi.org/10.1021/acs.macromol.1c00996

    Article  CAS  Google Scholar 

  36. M.-L. Tran-Do, J.-P. Habas, B. Ameduri, A.C.S. Appl, Polym. Mater. 4, 1401 (2022). https://doi.org/10.1021/acsapm.1c01780

    Article  CAS  Google Scholar 

  37. Y. Peng, S. Liu, L. Wang, Y. Xu, Z. Wu, H. Chen, Macromol. Rapid. Commun. 43, 2100920 (2022). https://doi.org/10.1002/marc.202100920

    Article  CAS  Google Scholar 

  38. V. Beraud, Y. Gnanou, B. Maillard, Macromol. Chem. Phys. 203, 1819 (2002)

    Article  CAS  Google Scholar 

  39. V. Béraud, L. Businelli, Y. Gnanou, B. Maillard, Macromol. Rapid Commun. 21, 901 (2000)

    Article  Google Scholar 

  40. V. Beraud, Y. Gnanou, J.C. Walton, B. Maillard, Tetrahedron Lett. 41, 1195 (2000)

    Article  CAS  Google Scholar 

  41. D. Ludin, Yu. Voitovich, E. Salomatina, Yu. Kuznetsova, I. Grishin, I. Fedushkin, S. Zaitsev, Macromol. Res. 28, 851 (2020). https://doi.org/10.1007/s13233-020-8111-3

    Article  CAS  Google Scholar 

  42. D.V. Ludin, Yu.L. Kuznetsova, S.D. Zaitsev, Polym. Sci. Ser. B. 59, 516 (2017). https://doi.org/10.1134/S1560090417050086

    Article  CAS  Google Scholar 

  43. D.V. Ludin, S.D. Zaitsev, Russ. Chem. Bull. 66, 1109 (2017). https://doi.org/10.1007/s11172-017-1862-0

    Article  CAS  Google Scholar 

  44. D.V. Ludin, S.D. Zaitsev, Yu.L. Kuznetsova, A.V. Markin, A.E. Mochalova, E.V. Salomatina, J. Polym. Res. 24, 117 (2017). https://doi.org/10.1007/s10965-017-1280-x

    Article  CAS  Google Scholar 

  45. D.V. Ludin, S.D. Zaitsev, A.V. Markin, I.D. Grishin, S.S. Sologubov, T.A. Kovylina, I.L. Fedushkin, Polym. Int. 71, 86 (2022). https://doi.org/10.1002/pi.6287

    Article  CAS  Google Scholar 

  46. V.A. Dodonov, Yu.L. Kuznetsova, A.I. Vilkova, A.S. Skuchilina, V.I. Nevodchikov, L.N. Beloded, Russ. Chem. Bull. 56, 1162 (2007). https://doi.org/10.1007/S11172-007-0176-z

    Article  CAS  Google Scholar 

  47. W.L.F. Armarego, C.C.L. Chai, Purification of laboratory chemicals (Elsevier, Oxford, 2013)

    Google Scholar 

  48. H.C. Brown, U.S. Racherla, J. Org. Chem. 51, 427 (1986). https://doi.org/10.1021/jo00354a002

    Article  CAS  Google Scholar 

  49. F. Derikvand, F. Bigi, R. Maggi, C.G. Piscopo, G. Sartori, J. Catal. 271, 99 (2010). https://doi.org/10.1016/j.apcata.2011.10.032

    Article  CAS  Google Scholar 

  50. J.C. Stowell, J. Org. Chem. 36, 3055 (1971). https://doi.org/10.1021/jo00819a038

    Article  CAS  Google Scholar 

  51. F. Tüdős, T. Földes-Berezsnich, Prog. Polym. Sci. 14, 717 (1989). https://doi.org/10.1016/0079-6700(89)90008-7

    Article  Google Scholar 

  52. J.L. Kice, J. Am. Chem. Soc. 76, 6274 (1954). https://doi.org/10.1021/ja01653a014

    Article  CAS  Google Scholar 

  53. P.S. Engel, H.J. Park, H. Mo, S. Duan, Tetrahedron 66, 8805 (2010). https://doi.org/10.1016/j.tet.2010.09.034

    Article  CAS  Google Scholar 

  54. K. Ichihara, I. Kawamura, K. Sakakibara, Y. Ikejiri, S. Himori, J. Phys. Org. Chem. 32, e3941 (2019). https://doi.org/10.1002/poc.3941

    Article  CAS  Google Scholar 

  55. E. Arancibia, J. Grotewold, E.A. Lissi, A.E. Villa, J. Polym. Sci. Part A: Polym. Chem. 7, 3430 (1969). https://doi.org/10.1002/pol.1969.150071219

    Article  CAS  Google Scholar 

  56. D. Griller, K.U. Ingold, L.K. Patterson, J.C. Scaiano, R.D. Small, J. Am. Chem. Soc. 101, 3780 (1979). https://doi.org/10.1021/ja00508a014

    Article  CAS  Google Scholar 

  57. D.V. Ludin, Yu.L. Kuznetsova, I.D. Grishin, V.A. Kuropatov, S.D. Zaitsev, Russ. Chem. Bull. 65, 1859 (2016). https://doi.org/10.1007/s11172-016-1521-x

    Article  CAS  Google Scholar 

  58. Yu.L. Kuznetsova, S.A. Chesnokov, S.D. Zaitsev, D.V. Ludin, Polym. Sci. Ser. B 54, 434 (2012). https://doi.org/10.1134/S1560090412090035

    Article  CAS  Google Scholar 

  59. F. Tüdős, L. Simandi, Polym. Sci. USSR 4, 204 (1963). https://doi.org/10.1016/0032-3950(63)90587-2

    Article  Google Scholar 

  60. J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer handbook, 4th edn. (Wiley-Interscience, New York, 1999)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Education of the Russian Federation (No. AAAA-A20-120092990108-5). "The work was carried out using the equipment of the center for collective use "Analytical Center of the IOMC RAS" with the financial support of the grant "Ensuring the development of the material and technical infrastructure of the centers for collective use of scientific equipment" (Agreement Number 13.CCU.21.0017) in the framework of the Russian state assignment"

Funding

Ministry of Education of the Russian Federation, AAAA-A20-120092990108-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii V. Ludin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 867 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludin, D.V., Illarionova, N.V., Bobrina, E.V. et al. Tributylborane/p-quinone system: reversible and irreversible inhibition in the styrene polymerization. Macromol. Res. 31, 271–283 (2023). https://doi.org/10.1007/s13233-023-00136-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00136-7

Keywords

Navigation