Skip to main content
Log in

Controlled Radical Polymerization: from Oxygen Inhibition and Tolerance to Oxygen Initiation

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Molecular oxygen is a radical scavenger in both conventional and controlled radical polymerization (CRP), resulting in many time-consuming methods for physically removing oxygen before the polymerization. Different approaches have been developed to have oxygen tolerance by chemically consuming or converting molecular oxygen into non-initiating species to address this issue. Recently, we propose another approach called oxygen initiation that directly transforms molecular oxygen into the initiating carbon radical in CRP. This feature article summarizes our recent developments in this direction. Oxygen-initiated reversible addition-fragmentation transfer (RAFT) polymerization has been successfully conducted using oxygen and trialkylborane as co-initiators under the ambient conditions and atmosphere without any prior degassed procedures. This gas-triggered initiation provides the opportunity for spatiotemporal control of the polymerization by molecular oxygen or air. Rationally synthesized alkylborane compounds could derive the predesigned structure of the initiating alkyl radical to minimize the side reactions and free polymer chains, achieving the synthesis of ultra-high molecular weight polymers. The challenges and perspectives are also discussed in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matyjaszewski, K.; Davis, T. P. Handbook of radical polymerization. Wiley Online Library: 2002.

  2. Yang, G.; Li, X.; He, Y.; Ma, J.; Ni, G.; Zhou, S. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 2018, 81, 80–113.

    Article  CAS  Google Scholar 

  3. Matyjaszewski, K. Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog. Polym. Sci. 2005, 30, 858–875.

    Article  CAS  Google Scholar 

  4. Flory, P. J. Principles of polymer chemistry. Cornell University Press: New York, 1953.

    Google Scholar 

  5. Gao, H.; Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by crp of monomers in the presence of cross-linkers: from stars to gels. Prog. Polym. Sci. 2009, 34, 317–350.

    Article  CAS  Google Scholar 

  6. Chen, C. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat. Rev. Chem. 2018, 2, 6–14.

    Article  CAS  Google Scholar 

  7. Matyjaszewski, K. Advanced materials by atom transfer radical polymerization. Adv. Mater. 2018, 30, 1706441.

    Article  CAS  Google Scholar 

  8. Grubbs, R. B.; Grubbs, R. H. Living polymerization-emphasizing the molecule in macromolecules. Macromolecules 2017, 50, 6979–6997.

    Article  CAS  Google Scholar 

  9. Müller, A. H. E.; Matyjaszewski, K. Controlled and living polymerizations. Wiley-VCH Verlag GmbH & Co. KGaA, 2010.

  10. Wang, J. S.; Matyjaszewsk, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615.

    Article  CAS  Google Scholar 

  11. Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev. 2018, 47, 5457–5490.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, W.; He, J.; Lv, C.; Wang, Q.; Pang, X.; Matyjaszewski, K.; Pan, X. Atom transfer radical polymerization driven by near-infrared light with recyclable upconversion nanoparticles. Macromolecules 2020, 53, 4678–4684.

    Article  CAS  Google Scholar 

  13. Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications. Chem. Rev. 2016, 116, 1803–1949.

    Article  CAS  PubMed  Google Scholar 

  14. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559–5562.

    Article  CAS  Google Scholar 

  15. Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H. RAFT agent design and synthesis. Macromolecules 2012, 45, 5321–5342.

    Article  CAS  Google Scholar 

  16. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988.

    Article  CAS  Google Scholar 

  17. Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63–235.

    Article  CAS  Google Scholar 

  18. Bhanu, V. A.; Kishore, K. Role of oxygen in polymerization reactions. Chem. Rev. 1991, 91, 99–117.

    Article  CAS  Google Scholar 

  19. Lv, C.; He, C.; Pan, X. Oxygen-initiated and regulated controlled radical polymerization under ambient conditions. Angew.Chem. Int. Ed. 2018, 130, 9574–9577.

    Article  Google Scholar 

  20. Lv, C.; Li, N.; Du, Y.; Li, J.; Pan, X. Activation and deactivation of chain-transfer agent in controlled radical polymerization by oxygen initiation and regulation. Chinese J. Polym. Sci. 2020, 38, 1178–1184.

    Article  CAS  Google Scholar 

  21. Lv, C.; Du, Y.; Pan, X. Alkylboranes in conventional and controlled radical polymerization. J. Polym. Sci. 2020, 58, 14–19.

    Article  CAS  Google Scholar 

  22. Wang, Y. L.; Wang Q. Y.; Pan, X. Controlled radical polymerization towards ultra-high molecular weight by rationally designed borane radical initiators. Cell Rep. Phys. Sci. 2020, 1, 10073.

    Google Scholar 

  23. Pan, X.; Malhotra, N.; Simakova, A.; Wang, Z.; Konkolewicz, D.; Matyjaszewski, K. Photoinduced atom transfer radical polymerization with ppm Cu catalyst by visible light in aqueous media. J. Am. Chem. Soc. 2015, 137, 15430–15433.

    Article  CAS  PubMed  Google Scholar 

  24. Pan, X.; Malhotra, N.; Zhang, J.; Matyjaszewski, K. Photoinduced Fe-based atom transfer radical polymerization in the absence of additional ligands, reducing agents, and radical initiators. Macromolecules 2015, 48, 6948–6954.

    Article  CAS  Google Scholar 

  25. Jakubowski, W.; Matyjaszewski, K. Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angew. Chem. Int. Ed. 2006, 45, 4482–4486.

    Article  CAS  Google Scholar 

  26. Zhang, L. F.; Cheng, Z. P.; Shi, S.; Li, Q.; Zhu, X. L. AGRET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air. Polymer 2008, 49, 3054–3059.

    Article  CAS  Google Scholar 

  27. Tang, F.; Zhang, L. F.; Zhu, J.; Cheng, Z. P.; Zhu X. L. Surface functionalization of chitosan nanospheres via surface-initiated AGET ATRP mediated by iron catalyst in the presence of limited amounts of air. Ind. Eng. Chem. Res. 2009, 48, 6216–6223.

    Article  CAS  Google Scholar 

  28. Li, Q.; Zhang, L. F.; Zhang, Z.; Zhou, N.; Cheng, Z. P.; Zhu X. L. Air-tolerantly surface-initiated AGET ATRP mediated by iron catalyst from silica nanoparticles. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2006–2015.

    Article  CAS  Google Scholar 

  29. Quirós-Montes, L.; Carriedo, G. A.; García-Álvarez, J.; Soto, A. P. Deep eutectic solvents for Cu-catalysed ARGET ATRP under an air atmosphere: a sustainable and efficient route to poly(methyl methacrylate) using a recyclable Cu(II) metal-organic framework. Green Chem. 2019, 21, 5865–5875.

    Article  Google Scholar 

  30. Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth, B. E. Zerovalent metals in controlled/“living” radical polymerization. Macromolecules 1997, 30, 7348–7350.

    Article  CAS  Google Scholar 

  31. Pan, X.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73–125.

    Article  CAS  Google Scholar 

  32. Dong, H.; Matyjaszewski, K. ARGET ATRP of 2-(dimethylamino)ethyl methacrylate as an intrinsic reducing agent. Macromolecules 2008, 41, 6868–6870.

    Article  CAS  Google Scholar 

  33. Jakubowski, W.; Min, K.; Matyjaszewski, K. Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules 2006, 39, 39–45.

    Article  CAS  Google Scholar 

  34. Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth, B. E. Controlled radical polymerization in the presence of oxygen. Macromolecules 1998, 31, 5967–5969.

    Article  CAS  Google Scholar 

  35. Pan, X.; Lathwal, S.; Mack, S.; Yan, J.; Das, S. R.; Matyjaszewski, K. Automated synthesis of well-defined polymers and biohybrids by atom transfer radical polymerization using a DNA synthesizer. Angew. Chem. Int. Ed. 2017, 56, 2740–2743.

    Article  CAS  Google Scholar 

  36. Lamb, J. R.; Qin, K. P.; John, J. A. Visible-light-mediated, additivefree, and open-to-air controlled radical polymerization of acrylates and acrylamides. Polym. Chem. 2019, 10, 1585–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng, J.; Xu, Q.; Ni, Y.; Zhang, L. F.; Cheng, Z. P.; Zhu X. L. Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance. Polym. Chem. 2019, 10, 2064–2072.

    Article  CAS  Google Scholar 

  38. Xu, J. T.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 2014, 136, 5508–5519.

    Article  CAS  PubMed  Google Scholar 

  39. Corrigan, N.; Shanmugam, S.; Xu, J. T.; Boyer, C. Photocatalysis in organic and polymer synthesis. Chem. Soc. Rev. 2016, 55, 6165–6212.

    Article  Google Scholar 

  40. Bagheri, A.; Bainbridge, C. W. A.; Engel, K. E.; Qiao, G.; Xu, J. T.; Boyer, C.; Jin, J. Y. Oxygen tolerant PET-RAFT facilitated 3D printing of polymeric materials under visible LEDs. ACS Appl. Polym. Mater. 2020, 2, 782–790.

    Article  CAS  Google Scholar 

  41. Gormley, A. J.; Yeow, J.; Ng, G.; Conway, O.; Boyer, C.; Chapman, R. An oxygen-tolerant PET-RAFT polymerization for screening structure-activity relationships. Angew. Chem. Int. Ed. 2018, 57, 1557–1562.

    Article  CAS  Google Scholar 

  42. Chapman, R.; Adam, J.; Herpoldt, K. L.; Stevens, M. M. Highly controlled open vessel RAFT polymerizations by enzyme degassing. Macromolecules 2014, 47, 8541–8547.

    Article  CAS  Google Scholar 

  43. Chapman, R.; Adam, J.; Stenzel, M. H.; Stevens, M. M. Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing. Angew. Chem. Int. Ed. 2016, 55, 4500–4503.

    Article  CAS  Google Scholar 

  44. Enciso, A. E.; Fu, L.; Russell, A. J.; Matyjaszewski, K. A breathing atom-transfer radical polymerization: fully oxygen-tolerant polymerization inspired by aerobic respiration of cells. Angew. Chem. Int. Ed. 2018, 57, 933–936.

    Article  CAS  Google Scholar 

  45. Enciso, A. E.; Fu, L.; Lathwal, S.; Olszewski, M.; Wang, Z. H.; Das, S. R.; Russell, A. J.; Matyjaszewski, K. Biocatalytic “oxygen-fueled” atom transfer radical polymerization. Angew. Chem. Int. Ed. 2018, 57, 1615–1616.

    Google Scholar 

  46. Fan, G.; Dundas, C. M.; Graham, A. J.; Lynd, N. A.; Keitz, B. K. Shewanella oneidensis as a living electrode for controlled radical polymerization. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 4559–4564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan, G.; Graham, A. J.; Kolli, J.; Lynd, N. A.; Keitz, B. K. Aerobic radical polymerization mediated by microbial metabolism. Nat. Chem. 2020, 12, 638–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, B.; Wang, X.; Zhu, A.; Ma, K.; Lv, Y.; Wang, X.; An, Z. Enzyme-initiated reversible addition-fragmentation chain transfer polymerization. Macromolecules 2015, 48, 7792–7802.

    Article  CAS  Google Scholar 

  49. Liu, Z.; Lv, Y.; An, Z. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance. Angew. Chem. Int. Ed. 2017, 56, 13852–13856.

    Article  CAS  Google Scholar 

  50. Zhou, F.; Li, R.; Wang, X.; Du, S.; An, Z. Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase. Angew. Chem. Int. Ed. 2019, 58, 9479–9484.

    Article  CAS  Google Scholar 

  51. Li, R.; An, Z. Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization. Angew. Chem. Int. Ed. 2020, 59, 22258–22264.

    Article  CAS  Google Scholar 

  52. Ollivier, C.; Renaud, P. Organoboranes as a source of radicals. Chem. Rev. 2001, 101, 3415–3434.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, Y.-N.; Li, J.; Wu, Y.; Luo, Z. H. Role of external field in polymerization: mechanism and kinetics. Chem. Rev. 2020, 120, 2950–3048.

    Article  CAS  PubMed  Google Scholar 

  54. He, C.; Pan, X. MIDA boronate stabilized polymers as a versatile platform for organoboron and functionalized polymers. Macromolecules 2020, 53, 3700–3708.

    Article  CAS  Google Scholar 

  55. Howe, D. H.; McDaniel, R. H.; Magenau, A. J. D. From click chemistry to cross-coupling: designer polymers from one efficient reaction. Macromolecules 2017, 50, 8010–8018.

    Article  CAS  Google Scholar 

  56. Wilson, O. R.; Magenau, A. J. D. Oxygen tolerant and room temperature RAFT through alkylborane initiation. ACS Macro Lett. 2018, 7, 370–375.

    Article  CAS  PubMed  Google Scholar 

  57. Timmins, R. L.; Wilson, O. R.; Magenau, A. J. D. Arm-first star-polymer synthesis in one-pot via alkylborane-initiated RAFT. J. Polym. Sci. 2020, 58, 1463.

    Article  CAS  Google Scholar 

  58. Alagi, P.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Fast and complete neutralization of thiocarbonylthio compounds using trialkylborane and oxygen: application to their removal from RAFT-synthesized polymers. ACS Macro Lett. 2019, 8, 664–669.

    Article  CAS  PubMed  Google Scholar 

  59. Kim, C. S.; Cho, S.; Lee, J. H.; Cho, W. K.; Son, K. Open-to-air RAFT polymerization on a surface under ambient conditions. Langmuir 2020, 36, 11538–11545.

    Article  CAS  PubMed  Google Scholar 

  60. Corrigan, N.; Jung, K.; Boyer, C. Merging new organoborane chemistry with living radical polymerization. Chem 2020, 6, 1212–1214.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University and the National Natural Science Foundation of China (Nos. 21871056, 21704017, and 91956122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Cheng Pan.

Additional information

Biography

Xiang-Cheng Pan is an associate professor and principal investigator in the State Key Laboratory of Molecular Engineering of Polymers and the Department of Macromolecular Science at Fudan University. In 2014, he obtained his Ph.D. in organic chemistry from the University of Pittsburgh under the guidance of Prof. Dennis P. Curran. He then spent three years of postdoctoral research at the group of Krzysztof Matyjaszewski at Carnegie Mellon University. In 2017, he returned to China and joined Fudan University. The research interest of his group focuses on the development of novel polymerization methods and sustainable polymers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Pan, XC. Controlled Radical Polymerization: from Oxygen Inhibition and Tolerance to Oxygen Initiation. Chin J Polym Sci 39, 1084–1092 (2021). https://doi.org/10.1007/s10118-021-2597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2597-9

Keywords

Navigation