Skip to main content
Log in

Effect of PCL-b-PEG Oligomer Containing Ionic Elements on Phase Interfacial Properties and Aggregated Structure of PLA/PCL Blends

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The polycaprolactone (PCL)-b-polyethylene glycol (PEG) oligomer (Oli) and its derivative containing ionic elements (ILs) were used as interfacial compatibilizers and regulators, and the polylactic acid (PLA)/PCL/Oli and PLA/PCL/ILs blends were prepared by solution blending. The effects of Oli and ILs on the phase interfacial properties, aggregated structure, crystallization and mechanical properties of PLA/PCL blends were systematically studied. The results show that the ILs with strong interfacial emulsification ability can improve the dispersion of PCL in PLA matrix, and enhance the two-phase interfacial adhesion. When the content of ILs is 5 %, ion clusters can form and alleviate the restricted crystallization of PCL, and promote the segment movement of PLA through the non-covalent bonding of ionic elements. So the crystallization ability of PLA and PCL improve simultaneously. ILs have a strong regulatory effect on the phase interfacial morphology and aggregated structure of PLA/PCL blends, and the PLA/PCL blends containing high content of 5 % ILs can significantly improve the mechanical properties of PLA/PCL blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J. M. Kenny, and L. Peponi, Polym. Degrad. Stab., 132, 97 (2016).

    Article  CAS  Google Scholar 

  2. H. G. Gui, Y. Li, S. Y. Chen, P. Xu, B. Zheng, and Y. S. Ding, Macromol. Res., 22, 583 (2014).

    Article  CAS  Google Scholar 

  3. B. Zhu, Y. Wang, H. Liu, J. Ying, C. Liu, and C. Shen, Compos. Sci. Technol., 190, 108048 (2020).

    Article  CAS  Google Scholar 

  4. R. U. Rao, B. Venkatanarayana, and K. N. S. Suman, Mater. Today: Proc., 18, 85 (2019).

    Google Scholar 

  5. A. R. Kakroodi, Y. Kazemi, D. Rodrigue, and C. B. Park, Chem. Eng. J., 351, 976 (2018).

    Article  CAS  Google Scholar 

  6. A. Ostafinska, I. Fortelný, J. Hodan, S. Krejčíková, M. Nevoralová, J. Kredatusová, Z. Kruliš, J. Kotek, and M. Šlouf, J. Mech. Behav. Biomed. Mater., 69, 229 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. D. Sharma and B. K. Satapathy, Mater. Today: Proc., 19, 188 (2019).

    CAS  Google Scholar 

  8. P. Wang, D. Zhang, Y. Zhou, Y. Li, H. Fang, H. Wei, and Y. Ding, Ionics, 24, 787 (2018).

    Article  CAS  Google Scholar 

  9. C. Zhang, T. Zhai, L. Turng, and Y. Dan, Ind. Eng. Chem. Res., 54, 9505 (2015).

    Article  CAS  Google Scholar 

  10. S. Wachirahuttapong, C. Thongpin, and N. Sombatsompop, Energy Procedia, 89, 198 (2016).

    Article  CAS  Google Scholar 

  11. A. K. Matta, R. U. Rao, K. N. S. Suman, and V. Rambabu, Procedia Mater. Sci., 6, 1266 (2014).

    Article  CAS  Google Scholar 

  12. K. Flandez, S. Bonarrd, and M. Soto-Arriaza, Chem. Phys. Lipids, 230, 104927 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. S. Moradi and J. K. Yeganeh, Polym. Test., 91, 106735 (2020).

    Article  CAS  Google Scholar 

  14. Y. Ding, W. Feng, D. Huang, B. Lu, P. Wang, G. Wang, and J. Ji, Eur. Polym. J., 118, 45 (2019).

    Article  CAS  Google Scholar 

  15. M. H. Huang, S. Li, and M. Vert, Polymer, 45, 8675 (2004).

    Article  CAS  Google Scholar 

  16. Y. Ding, B. Lu, P. Wang, G. Wang, and J. Ji, Polym. Degrad. Stab., 147, 41 (2018).

    Article  CAS  Google Scholar 

  17. X. Xiao, V. S. Chevali, P. Song, B. Yu, Y. Yang, and H. Wang, Compos. Commun., 21, 100385 (2020).

    Article  Google Scholar 

  18. J. K. Palacios, H. Zhang, B. Zhang, N. Hadjichristidis, and A. J. Müller, Polymer, 205, 122863 (2020).

    Article  CAS  Google Scholar 

  19. K. Chavalitpanya, and S. Phattanarudee, Energy Procedia, 34, 542 (2013).

    Article  CAS  Google Scholar 

  20. X. Peng, Y. Zhang, Y. Chen, S. Li, and B. He, Mater. Lett., 171, 83 (2016).

    Article  CAS  Google Scholar 

  21. V. Izraylit, M. Heuchel, O. E. C. Gould, K. Kratz, and A. Lendlein, Polymer, 209, 122984 (2020).

    Article  CAS  Google Scholar 

  22. I. Moura, R. Nogueira, V. Bounor-Legare, and A. V. Machado, Mater. Chem. Phys., 134, 103 (2012).

    Article  CAS  Google Scholar 

  23. I. Fortelny, A. Ujcic, L. Fambri, and M. Slouf, Front. Mater., 6, 206 (2019).

    Article  Google Scholar 

  24. P. Wang, B. Y. Fan, Y. Y. Zhou, T. Cao, P. Xu, J. Liu, Ali Bahader, X. B. Wang, and Y. S. Ding, J. Therm. Anal. Calorim., 147, 3207 (2022).

    Article  CAS  Google Scholar 

  25. A. Visco, D. Nocita, A. Giamporcaro, S. Ronca, G. Forte, A. Pistone, and C. Espro, J. Mech. Behav. Biomed. Mater., 68, 308 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. P. F. M. Finotti, L. C. Costa, and M. A. Chinelatto, Macromol. Symp., 368, 24 (2016).

    Article  CAS  Google Scholar 

  27. A. L. Hou and J. P. Qu, Polymers, 11, 771 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  28. P. Wang, Y. Zhou, X. Hu, F. Wang, J. Chen, P. Xu, and Y. Ding, Compos. Sci. Technol., 200, 108347 (2020).

    Article  CAS  Google Scholar 

  29. P. Wang, Z. Cui, X. Hu, P. Xu, and Y. Ding, J. Appl. Polym. Sci., 138, 49702 (2021).

    Article  CAS  Google Scholar 

  30. P. Wang, Y. Zhou, P. Xu, and Y. Ding, Ionics, 25, 3189 (2019).

    Article  CAS  Google Scholar 

  31. K. I. Park and M. Xanthos, Polym. Degrad. Stab., 94, 834 (2009).

    Article  CAS  Google Scholar 

  32. Y. Li, H. Fang, D. Zhang, A. Bahader, B. Zhen, P. Xu, and Y. Ding, J. Therm. Anal. Calorim., 125, 849 (2016).

    Article  CAS  Google Scholar 

  33. P. Wang, D. Zhang, Y. Zhou, Y. Li, H. Fang, H. Wei, and Y. Ding, Ionics, 24, 787 (2018).

    Article  CAS  Google Scholar 

  34. D. Y. Zuo, L. Zhang, C. H. Yi, and H. T. Zuo, Polym. Adv. Technol., 25, 1406 (2014).

    Article  CAS  Google Scholar 

  35. G. Saielli and Y. Wang, J. Phys. Chem., 120, 9152 (2016).

    Article  CAS  Google Scholar 

  36. P. Wang, P. Xu, H. Wei, H. Fang, and Y. Ding, J. Appl. Polym. Sci., 135, 46161 (2018).

    Article  CAS  Google Scholar 

  37. C. Yan, Y. P. Jiang, D.F. Hou, W. Yang, and M. B. Yang, Polymer, 186, 122021 (2020).

    Article  CAS  Google Scholar 

  38. Y. He, B. Zhu, W. Kai, and Y. Inoue, Macromolecules, 37, 3337 (2004).

    Article  CAS  Google Scholar 

  39. P. Xu, X. Luo, Y. Zhou, Y. Yang, and Y. Ding, Thermochim. Acta, 657, 156 (2017).

    Article  CAS  Google Scholar 

  40. L. C. Lins, S. Livi, J. Duchet-Rumeau, and J. F. Gérard, RSC Adv., 5, 59082 (2015).

    Article  CAS  Google Scholar 

  41. Q. Wang, J. Zhang, X. Wang, and Z. Wang, Appl. Surf. Sci., 526, 146657 (2020).

    Article  CAS  Google Scholar 

  42. M. P. Motloung, V. Ojijo, J. Bandyopadhyay, and S. S. Ray, Polymers, 11, 1270 (2019).

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This research was supported by the National Natural Science Foundation of China (No. 51903002), Natural Science Foundation of Anhui Education Department (No. KJ2019A0774, KJ2019JD18), Major science and technology projects of Anhui Province (201903a05020027), Anhui Jianzhu University PhD Startup Fund (2019QDZ22, 2018QD59) and University Collaborative Innovation Project of Anhui province (GXXT-2019-017), WuHu Key Technology Major R&D Projects (No. 2020yf14), Research Fund for Postdoctoral Researchers in Anhui Province (2020B413).

Supporting information: Information is regarding the preparation and characterization of Oli and ILs and SEM images of PLA/PCL blends to determine the optimal blend ratio of PLA and PCL. The materials are available via the Internet at http://www.springer.com/13233.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Gao, S., Chen, X. et al. Effect of PCL-b-PEG Oligomer Containing Ionic Elements on Phase Interfacial Properties and Aggregated Structure of PLA/PCL Blends. Macromol. Res. 30, 438–445 (2022). https://doi.org/10.1007/s13233-022-0058-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0058-0

Keywords

Navigation