Skip to main content
Log in

Effect of P[MPEGMA-IL] on morphological evolution and conductivity behavior of PLA/PCL blends

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Dielectric relaxation spectroscopy (DRS) was used to investigate the effect of morphological evolution on conductivity behavior of PLA/PCL blends containing P[MPEGMA-IL]. The morphology of blends changes from sea-island morphology into co-continuous morphology with increasing P[MPEGMA-IL] content. P[MEPGMA-IL] could mainly localize in PCL domains and expand to the interface layer between the PLA and PCL phase because of the low viscosity of PCL phase and the high affinity of MEPGMA groups for both polymer phases. The dielectric results were discussed in terms of α relaxation that corresponds to normal and segmental mode movement, interfacial polarization that corresponds to interfacial aggregation of charge carriers, and ac conductivity that originates from conductive network of mobile charge carriers. Co-continuous morphology and high ions concentration lead to the enhancement of segment movement and ion conductive channel in PCL phase, which correspond to high conductivity and low activation energy of PLA/PCL/8P[MEGMA-IL] blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  2. Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multifunctional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9

    Article  CAS  Google Scholar 

  3. Finotti PFM, Costa LC, Chinelatto MA (2016) Effect of the chemical structure of compatibilizers on the thermal, mechanical and morphological properties of immiscible PLA/PCL blends. Macromol Symp 368:24–29

    Article  CAS  Google Scholar 

  4. Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Inter 4(6):3091–3101

    Article  CAS  Google Scholar 

  5. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  CAS  Google Scholar 

  6. Forouharshad M, Gardella L, Furfaro D, Galimberti M, Monticelli O (2015) A low-environmental-impact approach for novel biocomposites based on PLLA/PCL blends and high surface area graphite. Eur Polym J 70:28–36

    Article  CAS  Google Scholar 

  7. Lai SM, Liu YH, Huang CT, Don TM (2017) Miscibility and toughness improvement of poly(lactic acid)/poly(3-hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res 24:102

    Article  CAS  Google Scholar 

  8. Chavalitpanya K, Phattanarudee S (2013) Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia 34:542–548

    Article  CAS  Google Scholar 

  9. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504

    Article  CAS  PubMed  Google Scholar 

  10. Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR (2006) Crystallization, morphology, and mechanical behavior of polylactide/poly(epsilon-caprolactone) blends. Polym Eng Sci 46(9):1299–1308

    Article  CAS  Google Scholar 

  11. Lv QL, Wu DF, Xie H, Peng S, Chen Y, Xu CJ (2016) Crystallization of poly(ε-caprolactone) in its immiscible blend with polylactide: insight into the role of annealing histories. RSC Adv 6(44):37721–37730

    Article  CAS  Google Scholar 

  12. Issaadi K, Habi A, Grohens Y, Pillin I (2015) Effect of the montmorillonite intercalant and anhydride maleic grafting on polylactic acid structure and properties. Appl Clay Sci 107:62–69

    Article  CAS  Google Scholar 

  13. Issaadi K, Habi A, Grohens Y, Pillin I (2016) Maleic anhydride-grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/graphene oxide nanocomposites. Polym Bull 73:2057–2071

    Article  CAS  Google Scholar 

  14. Zhang C, Zhai TL, Turng LS, Dan Y (2015) Morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by L-lactide/caprolactone copolymer. Ind Eng Chem Res 54(38):9505–9511

    Article  CAS  Google Scholar 

  15. Jeon O, Lee SH, Kim SH, Lee YM, Kim YH (2003) Synthesis and characterization of poly(l-lactide)-poly(ε-caprolactone) multiblock copolymers. Macromolecules 36(15):5585–5592

    Article  CAS  Google Scholar 

  16. Peponi L, Navarro-Baena I, Báez JE, Kenny JM, Marcos-Fernández A (2012) Effect of the molecular weight on the crystallinity of PCL-b-PLLA di-block copolymers. Polymer 53(21):4561–4568

    Article  CAS  Google Scholar 

  17. Zeng J-B, Li K-A (2015) Compatibilization strategies in poly (lactic acid)-based blends. RSC Adv 5(41):32546–32565

    Article  CAS  Google Scholar 

  18. Odent J, Leclère P, Raquez JM, Dubois P (2013) Toughening of polylactide by tailoring phase-morphology with P [CL-co-LA] random copolyesters as biodegradable impact modifiers. Eur Polym J 49(4):914–922

    Article  CAS  Google Scholar 

  19. Odent J, Habibi Y, Raquez JM, Dubois P (2013) Ultra-tough polylactide-based materials synergistically designed in the presence of rubbery ε-caprolactone-based copolyester and silica nanoparticles. Compos Sci Technol 84:86–91

    Article  CAS  Google Scholar 

  20. Wu DF, Zhang YS, Zhang M, Zhou W (2008) Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44(7):2171–2183

    Article  CAS  Google Scholar 

  21. Wu DF, Lin DP, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212(6):613–626

    Article  CAS  Google Scholar 

  22. Laredo E, Grimau M, Bello A, Wu DF, Zhang YS, Lin DP (2010) AC conductivity of selectively located carbon nanotubes in poly(ε-caprolactone)/polylactide blend nanocomposites. Biomacromolecules 11(5):1339–1347

    Article  CAS  PubMed  Google Scholar 

  23. Wang P, Xu P, Wei HB, Fang HG, Ding YS (2018) Effect of block copolymer containing ionic liquid moiety on interfacial polarization in PLA/PCL blends. J Appl Polym Sci 135(16):46161

    Article  CAS  Google Scholar 

  24. Singh MP, Singh RK, Chandra S (2014) Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog Mater Sci 64(10):73–120

    Article  CAS  Google Scholar 

  25. Park K, Ha JU, Xanthos M (2010) Ionic liquids as plasticizers/lubricants for polylactic acid. Polym Eng Sci 50:1105–1110

    Article  CAS  Google Scholar 

  26. Park KI, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94(5):834–844

    Article  CAS  Google Scholar 

  27. Leroy E, Jacquet P, Coativy G, Reguerre AL, Lourdin D (2012) Compatibilization of starch-zein melt processed blends by an ionic liquid used as plasticizer. Carbohydr Polym 89(3):955–963

    Article  CAS  PubMed  Google Scholar 

  28. Yousfi M, Livi S, Duchet-Rumeau J (2014) Ionic liquids: a new way for the compatibilization of thermoplastic blends. Chem Eng J 255(6):513–524

    Article  CAS  Google Scholar 

  29. Megevand B, Pruvost S, Lins LC, Livi S, Gérard JF, Duchet-Rumeau J (2016) Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Adv 6(98):96421–96430

    Article  CAS  Google Scholar 

  30. Wang P, Zhang D, Zhou YY, Li Y, Fang HG, Wei HB, Ding YS (2018) A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics 24(3):787–795

    Article  CAS  Google Scholar 

  31. Corrales TP, Laroze D, Zardalidis G, Floudas G, Butt HJ, Kappl M (2013) Dynamic heterogeneity and phase separation kinetics in miscible poly(vinyl acetate)/poly(ethylene oxide) blends by local dielectric spectroscopy. Macromolecules 46(18):7458–7464

    Article  CAS  Google Scholar 

  32. Ren JD, Adachi K (2003) Dielectric relaxation in blends of amorphous poly(DL-lactic acid) and semicrystalline poly(L-lactic acid). Macromolecules 36(36):5180–5186

    Article  CAS  Google Scholar 

  33. Bharati A, Wübbenhorst M, Moldenaers P, Cardinaels R (2016) Effect of compatibilization on interfacial polarization and intrinsic length scales in biphasic polymer blends of PαMSAN and PMMA: a combined experimental and modeling dielectric study. Macromolecules 49(4):1464–1478

    Article  CAS  Google Scholar 

  34. Xu P, Gui H, Yang S, Ding Y (2014) Dielectric and conductivity properties of poly(L-lactide) and poly(L-lactide)/ionic liquid blends. Macromol Res 22(3):304–309

    Article  CAS  Google Scholar 

  35. Calandrelli L, Calarco A, Laurienzo P, Malinconico M, Petillo O, Peluso G (2008) Compatibilized polymer blends based on PDLLA and PCL for application in bioartificial liver. Biomacromolecules 9(6):1527–1534

    Article  CAS  PubMed  Google Scholar 

  36. Noroozi N, Schafer LL, Hatzikiriakos SG (2012) Thermorheological properties of poly (ε-caprolactone)/polylactide blends. Polym Eng Sci 52(11):2348–2359

    Article  CAS  Google Scholar 

  37. Laoutid F, François D, Paint Y, Bonnaud L, Dubois P (2013) Using nanosilica to fine-tune morphology and properties of polyamide 6/poly(propylene) blends. Macromol Mater Eng 298(3):328–338

    Article  CAS  Google Scholar 

  38. Brás AR, Viciosa MT, Wang YM, Dionísio M, Mano JF (2006) Crystallization of poly(L-lactic acid) probed with dielectric relaxation spectroscopy. Macromolecules 39(19):6513–6520

    Article  CAS  Google Scholar 

  39. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370

    Article  CAS  Google Scholar 

  40. Starkweather HW, Peter A (1992) Conductivity and the electric modulus in polymers. J Polym Sci Polym Phys 30:637–641

    Article  CAS  Google Scholar 

  41. Mudarra M, Diaz-Calleja R, Belana J, Canadas JC, Diego JA, Sellares J, Sanchis MJ (2004) Sublinear dispersive conductivity in polymethyl methacrylate at temperatures above the glass transition. Polymer 45(8):2737–2742

    Article  CAS  Google Scholar 

  42. Ye YS, Sharick S, Davis EM, Winey KI, Elabd YA (2013) High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett 2(7):575–580

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (51603060) and the Fundamental Research Funds for the Central Universities (JD2016JGPY0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhou, Y., Xu, P. et al. Effect of P[MPEGMA-IL] on morphological evolution and conductivity behavior of PLA/PCL blends. Ionics 25, 3189–3196 (2019). https://doi.org/10.1007/s11581-019-02871-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02871-3

Keywords

Navigation