Skip to main content
Log in

Mechanical Properties of Polyetheretherketone Composites with Surface-Modified Hydroxyapatite Nanofibers and Carbon Fibers

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Though carbon fiber (CF)-reinforced polyetheretherketone (PEEK) has gained attention as an alternative to metallic orthopedic implant materials by virtue of its good biocompatibility and favorable mechanical properties, its applications are limited due to its bioinertness and hydrophobicity. Hydroxyapatite (HA) incorporated to address the issue has appeared to lower the mechanical strength, often severely, due to the aggregation of HA in the composites. This study aimed to develop a PEEK composite with HA and CF whose mechanical properties are comparable to those of human cortical bone. We synthesized and incorporated HA nanofibers (HANF) to improve the mechanical properties of the composite to take advantage of the high aspect ratio and bridging effect of the fibers. In addition, the HANF and CF were modified with a silane coupling agent to enhance their interfacial adhesion with the PEEK matrix. The results showed that incorporating the modified HANF (m-HANF) and the modified CF (m-CF) effectively improved the mechanical properties compared to those of neat PEEK and composites with unmodified fillers. Mechanical properties comparable to those of the cortical bone were observed in PEEK/m-HANF/m-CF composites of various compositions. The improved dispersion of the HANF and enhanced interfacial adhesion of m-HANF and m-CF with the PEEK matrix were also observed in the X-ray tomography microscope system (XRM) and scanning electron microscopy (SEM) results. This unique PEEK/m-HANF/m-CF composite can yield an effective design strategy for developing high-performance PEEK biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Huiskes, Acta Orthop Belg, 59, 118 (1993).

    PubMed  Google Scholar 

  2. Z. R. Mi, S. Shuib, A. Hassan, A. Shorki, and M. Ibrahim, J. Med. Sci., 7, 460 (2007).

    Article  Google Scholar 

  3. J. Y. Rho, R. B. Ashman, and C. H. Turner, J. Biomech, 26, 111 (1993).

    Article  CAS  Google Scholar 

  4. S. Mishra and R. Chowdhary, Clin. Implant Dent R, 21, 208 (2019).

    Article  Google Scholar 

  5. S. M. Kurtz and J. N. Devine, Biomaterials, 28, 4845 (2007).

    Article  CAS  Google Scholar 

  6. C. S. Li, C. Vannabouathong, S. Sprague, and M. Bhandari, Clin. Med. Insights-Arthritis Musculoskelet. Disord., 8, 33 (2015).

    Article  Google Scholar 

  7. F. X. S. Guoxin and Y. Rui, Chin. J. Mater. Res., 22, 18 (2008).

    Google Scholar 

  8. Y. Deng, P. Zhou, X. Liu, L. Wang, X. Xiong, Z. Tang, J. Wei, and S. Wei, Colloid. Surface B, 136, 64 (2015).

    Article  CAS  Google Scholar 

  9. M. N. Uddin, P. S. Dhanasekaran, and R. Asmatulu, Prog. Biomater, 8, 211 (2019).

    Article  CAS  Google Scholar 

  10. M. A. Bakar, M. Cheng, S. Tang, S. Yu, K. Liao, C. Tan, K. Khor, and P. Cheang, Biomaterials, 24, 2245 (2003).

    Article  Google Scholar 

  11. R. Ma, Q. Li, L. Wang, X. Zhang, L. Fang, Z. Luo, B. Xue, and L. Ma, Mat. Sci. Eng. C, 73, 429 (2017).

    Article  CAS  Google Scholar 

  12. L. Wang, L. Q. Weng, Z. Z. Wu, and C. B. Wang, Adv. Mat. Res., Trans Tech Publ 2015, Vol. 1096, pp 214–218.

    Google Scholar 

  13. A. R. Rashidi, M. U. Wahit, M. R. Abdullah, and M. R. Abdul Kadir, Adv. Mat. Res., Trans Tech Publ 2015, Vol. 1125, pp 426–431.

    Google Scholar 

  14. J. Esmaeilzadeh, S. Hesaraki, S. M.-M. Hadavi, M. H. Ebrahimzadeh, and M. Esfandeh, Mat. Sci. Eng. C, 77, 978 (2017).

    Article  CAS  Google Scholar 

  15. S. Wang, S. Wen, M. Shen, R. Guo, X. Cao, J. Wang, and X. Shi, Int. J. Nanomed., 6, 3449 (2011).

    CAS  Google Scholar 

  16. S. Rakmae, Y. Ruksakulpiwat, W. Sutapun, and N. Suppakarn, Mat. Sci. Eng. C, 32, 1428 (2012).

    Article  CAS  Google Scholar 

  17. K. G. Dassios, Adv. Compos. Lett., 16, 096369350701600102 (2007).

    Article  Google Scholar 

  18. X. Tao, J. Liu, G. Koley, and X. Li, Adv. Mater., 20, 4091 (2008).

    Article  CAS  Google Scholar 

  19. L. Chen, Q. Yu, Y. Wang, and H. Li, Dent. Mater., 27, 1187 (2011).

    Article  CAS  Google Scholar 

  20. H.-S. Ko, S. Lee, and J. Y. Jho, Nanomaterials, 11, 213 (2021).

    Article  CAS  Google Scholar 

  21. H. Zhang, Y. Wang, Y. Yan, and S. Li, Ceram. Int., 29, 413 (2003).

    Article  CAS  Google Scholar 

  22. Z. Gandou, A. Nounah, B. Belhorma, and A. Yahyaoui, J. Mater. Environ. Sci., 6, 983 (2015).

    CAS  Google Scholar 

  23. H. El Boujaady, M. Mourabet, A. El Rhilassi, M. Bennani-Ziatni, R. El Hamri, and A. Taitai, J. Mater. Environ. Sci., 7, 4049 (2016).

    CAS  Google Scholar 

  24. Y. Sa, Y. Guo, X. Feng, M. Wang, P. Li, Y. Gao, X. Yang, and T. Jiang, New J. Chem., 41, 5723 (2017).

    Article  CAS  Google Scholar 

  25. J. J. Lovón-Quintana, J. K. Rodriguez-Guerrero, and P. G. Valença, Appl. Catal. A-Gen., 542, 136 (2017).

    Article  Google Scholar 

  26. O. Kaygili, C. Tatar, and F. Yakuphanoglu, Ceram. Int., 38, 5713 (2012).

    Article  CAS  Google Scholar 

  27. J. Yao, Y. Zhang, Y. Wang, M. Chen, Y. Huang, J. Cao, W. Ho, and S. C. Lee, Rsc. Adv., 7, 24683 (2017).

    Article  CAS  Google Scholar 

  28. F. Zhang and M. Srinivasan, Langmuir, 20, 2309 (2004).

    Article  CAS  Google Scholar 

  29. N. Graf, E. Yegen, T. Gross, A. Lippitz, W. Weigel, S. Krakert, A. Terfort, and W. E. Unger, Surf. Sci., 603, 2849 (2009).

    Article  CAS  Google Scholar 

  30. A. Russo, M. Zarrelli, A. Sellitto, and A. Riccio, Materials, 12, 2407 (2019).

    Article  CAS  Google Scholar 

  31. B. Jiang, C. Liu, C. Zhang, B. Wang, and Z. Wang, Compos. Part B-Eng., 38, 24 (2007).

    Article  Google Scholar 

  32. J. Kardos, Pure. Appl. Chem., 57, 1651 (1985).

    Article  CAS  Google Scholar 

  33. A. Haque and A. Ramasetty, Compos. Struct, 71, 68 (2005).

    Article  Google Scholar 

  34. P. Shouha, M. Swain, and A. Ellakwa, Dent. Mater., 30, 1234 (2014).

    Article  CAS  Google Scholar 

  35. P. Bhatt and A. Goe, Mater. Sci. Res. India, 14, 52 (2017).

    Article  CAS  Google Scholar 

  36. M. Wang, D. Porter, and W. Bonfield, Brit. Ceram. T, 93, 91 (1994).

    CAS  Google Scholar 

  37. J. Caeiro, P. González, and D. Guede, Rev. Osteopor Metab. M., 5, 99 (2013).

    Article  Google Scholar 

  38. A. C. Lawson and J. Czernuszka, P I Mech. Eng. H, 212, 413 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Young Jho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Jeon, I.S. & Jho, J.Y. Mechanical Properties of Polyetheretherketone Composites with Surface-Modified Hydroxyapatite Nanofibers and Carbon Fibers. Macromol. Res. 30, 261–270 (2022). https://doi.org/10.1007/s13233-022-0028-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0028-6

Keywords

Navigation